BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38916967)

  • 1. Effect of Phosphate on the Molecular Properties, Interactions, and Assembly of Engineered Spider Silk Proteins.
    Yin Y; Griffo A; Gutiérrez Cruz A; Hähl H; Jacobs K; Linder MB
    Biomacromolecules; 2024 Jun; ():. PubMed ID: 38916967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spider dragline silk composite films doped with linear and telechelic polyalanine: Effect of polyalanine on the structure and mechanical properties.
    Tsuchiya K; Ishii T; Masunaga H; Numata K
    Sci Rep; 2018 Feb; 8(1):3654. PubMed ID: 29483536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilizing conformational changes for patterning thin films of recombinant spider silk proteins.
    Young SL; Gupta M; Hanske C; Fery A; Scheibel T; Tsukruk VV
    Biomacromolecules; 2012 Oct; 13(10):3189-99. PubMed ID: 22947370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-Function Relationship of Artificial Spider Silk Fibers Produced by Straining Flow Spinning.
    Gonska N; López PA; Lozano-Picazo P; Thorpe M; Guinea GV; Johansson J; Barth A; Pérez-Rigueiro J; Rising A
    Biomacromolecules; 2020 Jun; 21(6):2116-2124. PubMed ID: 32223220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presence of β-Turn Structure in Recombinant Spider Silk Dissolved in Formic Acid Revealed with NMR.
    Suzuki Y; Higashi T; Yamamoto T; Okamura H; Sato TK; Asakura T
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly mechanism of recombinant spider silk proteins.
    Rammensee S; Slotta U; Scheibel T; Bausch AR
    Proc Natl Acad Sci U S A; 2008 May; 105(18):6590-5. PubMed ID: 18445655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary structure elements of spider dragline silks and their contribution to protein solubility.
    Huemmerich D; Helsen CW; Quedzuweit S; Oschmann J; Rudolph R; Scheibel T
    Biochemistry; 2004 Oct; 43(42):13604-12. PubMed ID: 15491167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrothermal Effect on Mechanical Properties of
    Wu HC; Pandey A; Chang LY; Hsu CY; Yang TC; Tso IM; Sheu HS; Yang JC
    Polymers (Basel); 2020 Apr; 12(5):. PubMed ID: 32365504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structural view on spider silk proteins and their role in fiber assembly.
    Hagn F
    J Pept Sci; 2012 Jun; 18(6):357-65. PubMed ID: 22570231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of Biomimetic Artificial Spider Silk Fibers Tuned by PostSpin Bath Incubation.
    Greco G; Francis J; Arndt T; Schmuck B; G Bäcklund F; Barth A; Johansson J; M Pugno N; Rising A
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Major Ampullate Spider Silk with Indistinguishable Spidroin Dope Conformations Leads to Different Fiber Molecular Structures.
    Dionne J; Lefèvre T; Auger M
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27548146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyrosine's Unique Role in the Hierarchical Assembly of Recombinant Spider Silk Proteins: From Spinning Dope to Fibers.
    Stengel D; Saric M; Johnson HR; Schiller T; Diehl J; Chalek K; Onofrei D; Scheibel T; Holland GP
    Biomacromolecules; 2023 Mar; 24(3):1463-1474. PubMed ID: 36791420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Hydrophobic Films of Engineered Silk Proteins by a Simple Deposition Method.
    Välisalmi T; Roas-Escalona N; Meinander K; Mohammadi P; Linder MB
    Langmuir; 2023 Mar; 39(12):4370-4381. PubMed ID: 36926896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered Spider Silk Proteins for Biomimetic Spinning of Fibers with Toughness Equal to Dragline Silks.
    Arndt T; Greco G; Schmuck B; Bunz J; Shilkova O; Francis J; Pugno NM; Jaudzems K; Barth A; Johansson J; Rising A
    Adv Funct Mater; 2022 Jun; 32(23):2200986. PubMed ID: 36505976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A proposed model for dragline spider silk self-assembly: insights from the effect of the repetitive domain size on fiber properties.
    Ittah S; Barak N; Gat U
    Biopolymers; 2010 May; 93(5):458-68. PubMed ID: 20014164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber.
    Xia XX; Qian ZG; Ki CS; Park YH; Kaplan DL; Lee SY
    Proc Natl Acad Sci U S A; 2010 Aug; 107(32):14059-63. PubMed ID: 20660779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformation and dynamics of soluble repetitive domain elucidates the initial β-sheet formation of spider silk.
    Oktaviani NA; Matsugami A; Malay AD; Hayashi F; Kaplan DL; Numata K
    Nat Commun; 2018 May; 9(1):2121. PubMed ID: 29844575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complexity of Spider Dragline Silk.
    Malay AD; Craig HC; Chen J; Oktaviani NA; Numata K
    Biomacromolecules; 2022 May; 23(5):1827-1840. PubMed ID: 35378031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Testing of Engineered Spider Silk Filaments Provides Insights into Molecular Features on a Mesoscale.
    Lang G; Neugirg BR; Kluge D; Fery A; Scheibel T
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):892-900. PubMed ID: 27935285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombinant Silk Fiber Properties Correlate to Prefibrillar Self-Assembly.
    Xu L; Weatherbee-Martin N; Liu XQ; Rainey JK
    Small; 2019 Mar; 15(12):e1805294. PubMed ID: 30756524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.