These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38917021)

  • 1. Revealing the structure of the active sites for the electrocatalytic CO
    Martini A; Timoshenko J; Rüscher M; Hursán D; Monteiro MCO; Liberra E; Roldan Cuenya B
    J Synchrotron Radiat; 2024 Jul; 31(Pt 4):741-750. PubMed ID: 38917021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking the Evolution of Single-Atom Catalysts for the CO
    Martini A; Hursán D; Timoshenko J; Rüscher M; Haase F; Rettenmaier C; Ortega E; Etxebarria A; Roldan Cuenya B
    J Am Chem Soc; 2023 Aug; 145(31):17351-17366. PubMed ID: 37524049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking heterogeneous structural motifs and the redox behaviour of copper-zinc nanocatalysts for the electrocatalytic CO
    Rüscher M; Herzog A; Timoshenko J; Jeon HS; Frandsen W; Kühl S; Roldan Cuenya B
    Catal Sci Technol; 2022 May; 12(9):3028-3043. PubMed ID: 35662799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible Structural Evolution of Metal-Nitrogen-Doped Carbon Catalysts During CO
    Hursán D; Timoshenko J; Ortega E; Jeon HS; Rüscher M; Herzog A; Rettenmaier C; Chee SW; Martini A; Koshy D; Roldán Cuenya B
    Adv Mater; 2024 Jan; 36(4):e2307809. PubMed ID: 37994692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise electronic structure modulation on MXene-based single atom catalysts for high-performance electrocatalytic CO
    Cao S; Liu Y; Hu Y; Li J; Yang C; Chen Z; Wang Z; Wei S; Liu S; Lu X
    J Colloid Interface Sci; 2023 Jul; 642():273-282. PubMed ID: 37004261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure- and Electrolyte-Sensitivity in CO
    Arán-Ais RM; Gao D; Roldan Cuenya B
    Acc Chem Res; 2018 Nov; 51(11):2906-2917. PubMed ID: 30335937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible metal cluster formation on Nitrogen-doped carbon controlling electrocatalyst particle size with subnanometer accuracy.
    Timoshenko J; Rettenmaier C; Hursán D; Rüscher M; Ortega E; Herzog A; Wagner T; Bergmann A; Hejral U; Yoon A; Martini A; Liberra E; Monteiro MCO; Cuenya BR
    Nat Commun; 2024 Jul; 15(1):6111. PubMed ID: 39030207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Atom Metal and Nonmetal Site Catalyst on a Single Nickel Atom Supported on a Hybridized BCN Nanosheet for Electrochemical CO
    Zhang Y; Liu T; Wang X; Dang Q; Zhang M; Zhang S; Li X; Tang S; Jiang J
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9073-9083. PubMed ID: 35138796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-organic framework derived single-atom catalysts for electrochemical CO
    Xie M; Wang J; Du XL; Gao N; Liu T; Li Z; Xiao G; Li T; Wang JQ
    RSC Adv; 2022 Nov; 12(50):32518-32525. PubMed ID: 36425674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Operando XAS/SAXS: Guiding Design of Single-Atom and Subnanocluster Catalysts.
    Fang L; Seifert S; Winans RE; Li T
    Small Methods; 2021 May; 5(5):e2001194. PubMed ID: 34928104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting photo-assisted efficient electrochemical CO
    Dutta S; Pati SK
    Phys Chem Chem Phys; 2023 Jun; 25(23):15788-15797. PubMed ID: 37254706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the Electronic Structure and Dynamics of the Atomically Dispersed Iron Sites in Electrochemical CO
    Zeng Y; Zhao J; Wang S; Ren X; Tan Y; Lu YR; Xi S; Wang J; Jaouen F; Li X; Huang Y; Zhang T; Liu B
    J Am Chem Soc; 2023 Jul; 145(28):15600-15610. PubMed ID: 37418344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-atomic loaded C
    Sun Y; Tao L; Wu M; Dastan D; Rehman J; Li L; An B
    Nanoscale; 2024 May; 16(20):9791-9801. PubMed ID: 38700428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Analysis of Single-Atom Catalysts by X-ray Absorption Spectroscopy.
    Chen Z; Walsh AG; Zhang P
    Acc Chem Res; 2024 Feb; ():. PubMed ID: 38334075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operando Laboratory-Based Multi-Edge X-Ray Absorption Near-Edge Spectroscopy of Solid Catalysts.
    Genz NS; Kallio AJ; Oord R; Krumeich F; Pokle A; Prytz Ø; Olsbye U; Meirer F; Huotari S; Weckhuysen BM
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202209334. PubMed ID: 36205032
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Timoshenko J; Roldan Cuenya B
    Chem Rev; 2021 Jan; 121(2):882-961. PubMed ID: 32986414
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Rettenmaier C; Herzog A; Casari D; Rüscher M; Jeon HS; Kordus D; Luna ML; Kühl S; Hejral U; Davis EM; Chee SW; Timoshenko J; Alexander DTL; Bergmann A; Cuenya BR
    EES Catal; 2024 Jan; 2(1):311-323. PubMed ID: 38222061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination environment engineering on nickel single-atom catalysts for CO
    Ma M; Li F; Tang Q
    Nanoscale; 2021 Nov; 13(45):19133-19143. PubMed ID: 34779473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering the Local Environment of Single-Atom Catalysts with X-ray Absorption Spectroscopy.
    Li Y; Frenkel AI
    Acc Chem Res; 2021 Jun; 54(11):2660-2669. PubMed ID: 33990137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of Single-Atom Catalysts and Tracking Their Fate Using
    Sarma BB; Maurer F; Doronkin DE; Grunwaldt JD
    Chem Rev; 2023 Jan; 123(1):379-444. PubMed ID: 36418229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.