These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 38917322)

  • 1. Refining the pool of RNA-binding domains advances the classification and prediction of RNA-binding proteins.
    Wassmer E; Koppány G; Hermes M; Diederichs S; Caudron-Herger M
    Nucleic Acids Res; 2024 Jul; 52(13):7504-7522. PubMed ID: 38917322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RBP2GO: a comprehensive pan-species database on RNA-binding proteins, their interactions and functions.
    Caudron-Herger M; Jansen RE; Wassmer E; Diederichs S
    Nucleic Acids Res; 2021 Jan; 49(D1):D425-D436. PubMed ID: 33196814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic Disorder in Human RNA-Binding Proteins.
    Zhao B; Katuwawala A; Oldfield CJ; Hu G; Wu Z; Uversky VN; Kurgan L
    J Mol Biol; 2021 Oct; 433(21):167229. PubMed ID: 34487791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond RNA-binding domains: determinants of protein-RNA binding.
    Zigdon I; Carmi M; Brodsky S; Rosenwaser Z; Barkai N; Jonas F
    RNA; 2024 Nov; 30(12):1620-1633. PubMed ID: 39353735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EuRBPDB: a comprehensive resource for annotation, functional and oncological investigation of eukaryotic RNA binding proteins (RBPs).
    Liao JY; Yang B; Zhang YC; Wang XJ; Ye Y; Peng JW; Yang ZZ; He JH; Zhang Y; Hu K; Lin DC; Yin D
    Nucleic Acids Res; 2020 Jan; 48(D1):D307-D313. PubMed ID: 31598693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive Identification of RNA-Binding Domains in Human Cells.
    Castello A; Fischer B; Frese CK; Horos R; Alleaume AM; Foehr S; Curk T; Krijgsveld J; Hentze MW
    Mol Cell; 2016 Aug; 63(4):696-710. PubMed ID: 27453046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A brave new world of RNA-binding proteins.
    Hentze MW; Castello A; Schwarzl T; Preiss T
    Nat Rev Mol Cell Biol; 2018 May; 19(5):327-341. PubMed ID: 29339797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.
    Brannan KW; Jin W; Huelga SC; Banks CA; Gilmore JM; Florens L; Washburn MP; Van Nostrand EL; Pratt GA; Schwinn MK; Daniels DL; Yeo GW
    Mol Cell; 2016 Oct; 64(2):282-293. PubMed ID: 27720645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribonucleoprotein particles: advances and challenges in computational methods.
    Dvir S; Argoetti A; Mandel-Gutfreund Y
    Curr Opin Struct Biol; 2018 Dec; 53():124-130. PubMed ID: 30172766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finding the target sites of RNA-binding proteins.
    Li X; Kazan H; Lipshitz HD; Morris QD
    Wiley Interdiscip Rev RNA; 2014; 5(1):111-30. PubMed ID: 24217996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding specificities of human RNA-binding proteins toward structured and linear RNA sequences.
    Jolma A; Zhang J; Mondragón E; Morgunova E; Kivioja T; Laverty KU; Yin Y; Zhu F; Bourenkov G; Morris Q; Hughes TR; Maher LJ; Taipale J
    Genome Res; 2020 Jul; 30(7):962-973. PubMed ID: 32703884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin-contact atlas reveals disorder-mediated protein interactions and moonlighting chromatin-associated RBPs.
    Rafiee MR; Zagalak JA; Sidorov S; Steinhauser S; Davey K; Ule J; Luscombe NM
    Nucleic Acids Res; 2021 Dec; 49(22):13092-13107. PubMed ID: 34871434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting RNA-binding residues from evolutionary information and sequence conservation.
    Huang YF; Chiu LY; Huang CC; Huang CK
    BMC Genomics; 2010 Dec; 11 Suppl 4(Suppl 4):S2. PubMed ID: 21143803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Silico Prediction and Validation of Novel RNA Binding Proteins and Residues in the Human Proteome.
    Chowdhury S; Zhang J; Kurgan L
    Proteomics; 2018 Nov; 18(21-22):e1800064. PubMed ID: 29806170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential of engineered eukaryotic RNA-binding proteins as molecular tools and therapeutics.
    Shotwell CR; Cleary JD; Berglund JA
    Wiley Interdiscip Rev RNA; 2020 Jan; 11(1):e1573. PubMed ID: 31680457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TriPepSVM: de novo prediction of RNA-binding proteins based on short amino acid motifs.
    Bressin A; Schulte-Sasse R; Figini D; Urdaneta EC; Beckmann BM; Marsico A
    Nucleic Acids Res; 2019 May; 47(9):4406-4417. PubMed ID: 30923827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Musashi-1: An Example of How Polyalanine Tracts Contribute to Self-Association in the Intrinsically Disordered Regions of RNA-Binding Proteins.
    Chen TC; Huang JR
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32225071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. APRICOT: an integrated computational pipeline for the sequence-based identification and characterization of RNA-binding proteins.
    Sharan M; Förstner KU; Eulalio A; Vogel J
    Nucleic Acids Res; 2017 Jun; 45(11):e96. PubMed ID: 28334975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.
    Schlundt A; Tants JN; Sattler M
    Methods; 2017 Apr; 118-119():119-136. PubMed ID: 28315749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How do RNA binding proteins trigger liquid-liquid phase separation in human health and diseases?
    Huai Y; Mao W; Wang X; Lin X; Li Y; Chen Z; Qian A
    Biosci Trends; 2022 Dec; 16(6):389-404. PubMed ID: 36464283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.