These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38917407)

  • 21. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source.
    Byun HJ; Song WS; Yang H
    Nanotechnology; 2011 Jun; 22(23):235605. PubMed ID: 21483087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of p-n heterojunction between CoWO
    Li L; Kuang K; Zheng X; Wang J; Ren W; Ge J; Zhang S; Chen S
    J Colloid Interface Sci; 2024 Jun; 663():981-991. PubMed ID: 38452547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zinc ions modified InP quantum dots for enhanced photocatalytic hydrogen evolution from hydrogen sulfide.
    Yu S; Xie Z; Ran M; Wu F; Zhong Y; Dan M; Zhou Y
    J Colloid Interface Sci; 2020 Aug; 573():71-77. PubMed ID: 32272299
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrafast Electron Transfer in InP/ZnSe/ZnS Quantum Dots for Photocatalytic Hydrogen Evolution.
    Zeng S; Tan W; Si J; Mao L; Shi J; Li Y; Hou X
    J Phys Chem Lett; 2022 Oct; 13(39):9096-9102. PubMed ID: 36154010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shell Thickness Engineering Significantly Boosts the Photocatalytic H
    Wang P; Wang M; Zhang J; Li C; Xu X; Jin Y
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35712-35720. PubMed ID: 28952304
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of staggered bandgap in the InP/CdSe and CdSe/InP core/shell quantum dots.
    Kim S; Park J; Kim S; Jung W; Sung J; Kim SW
    J Colloid Interface Sci; 2010 Jun; 346(2):347-51. PubMed ID: 20381813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning the Lattice Parameter of InxZnyP for Highly Luminescent Lattice-Matched Core/Shell Quantum Dots.
    Pietra F; De Trizio L; Hoekstra AW; Renaud N; Prato M; Grozema FC; Baesjou PJ; Koole R; Manna L; Houtepen AJ
    ACS Nano; 2016 Apr; 10(4):4754-62. PubMed ID: 27065247
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metallic 1T-phase MoS
    Liang Z; Sun B; Xu X; Cui H; Tian J
    Nanoscale; 2019 Jul; 11(25):12266-12274. PubMed ID: 31210228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manipulating the Optoelectronic Properties of Quasi-type II CuInS
    Wang C; Tong X; Wang W; Xu JY; Besteiro LV; Channa AI; Lin F; Wu J; Wang Q; Govorov AO; Vomiero A; Wang ZM
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36277-36286. PubMed ID: 32805789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An amorphous nickel boride-modified Zn
    Cao Y; Wang G; Ma Q; Jin Z
    Dalton Trans; 2020 Jan; 49(4):1220-1231. PubMed ID: 31903476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advanced Interface Engineering in Gradient Core/Shell Quantum Dots Enables Efficient Photoelectrochemical Hydrogen Evolution.
    Zhang H; Liu J; Besteiro LV; Selopal GS; Zhao Z; Sun S; Rosei F
    Small; 2024 May; 20(22):e2306203. PubMed ID: 38128031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bandgap Engineering of Indium Phosphide-Based Core/Shell Heterostructures Through Shell Composition and Thickness.
    Toufanian R; Piryatinski A; Mahler AH; Iyer R; Hollingsworth JA; Dennis AM
    Front Chem; 2018; 6():567. PubMed ID: 30515380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic effect of interstitial phosphorus doping and MoS
    Liu Q; You J; Xiong Y; Liu W; Song M; Ren J; Xue Q; Tian J; Zhang H; Wang X
    J Colloid Interface Sci; 2024 Jul; 675():772-782. PubMed ID: 39002228
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Volumetric Density Atomic Cobalt on Multishell Zn
    Zeng R; Liu T; Qiu M; Tan H; Gu Y; Ye N; Dong Z; Li L; Lin F; Sun Q; Zhang Q; Gu L; Luo M; Tang D; Guo S
    J Am Chem Soc; 2024 Apr; 146(14):9721-9727. PubMed ID: 38556809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nano Anatase TiO
    Yu S; Han B; Lou Y; Qian G; Wang Z
    Inorg Chem; 2020 Mar; 59(5):3330-3339. PubMed ID: 32058697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters.
    Jang EP; Han CY; Lim SW; Jo JH; Jo DY; Lee SH; Yoon SY; Yang H
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46062-46069. PubMed ID: 31746194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning the interfacial stoichiometry of InP core and InP/ZnSe core/shell quantum dots.
    Park N; Eagle FW; DeLarme AJ; Monahan M; LoCurto T; Beck R; Li X; Cossairt BM
    J Chem Phys; 2021 Aug; 155(8):084701. PubMed ID: 34470352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potassium Iodide Doping for Vacancy Substitution and Dangling Bond Repair in InP Core-Shell Quantum Dots.
    Lee JE; Lee CJ; Lee SJ; Jeong UH; Park JG
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Composition-dependent trap distributions in CdSe and InP quantum dots probed using photoluminescence blinking dynamics.
    Chung H; Cho KS; Koh WK; Kim D; Kim J
    Nanoscale; 2016 Jul; 8(29):14109-16. PubMed ID: 27272126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long Electron-Hole Separation of ZnO-CdS Core-Shell Quantum Dots.
    Xu F; Volkov V; Zhu Y; Bai H; Rea A; Valappil NV; Su W; Gao X; Kuskovsky IL; Matsui H
    J Phys Chem C Nanomater Interfaces; 2009 Nov; 113(45):19419-19423. PubMed ID: 30873252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.