These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 38917542)
1. Mechanisms of well iron clogging in groundwater heat pump systems: Insights from video imaging, hydrogeochemical analysis, and geochemical modeling. Shi M; Yang Y; Wu Y; Wang Q; Gao L; Lu Y J Environ Manage; 2024 Aug; 365():121535. PubMed ID: 38917542 [TBL] [Abstract][Full Text] [Related]
2. Kinetic Study on Clogging of a Geothermal Pumping Well Triggered by Mixing-Induced Biogeochemical Reactions. Burté L; Cravotta CA; Bethencourt L; Farasin J; Pédrot M; Dufresne A; Gérard MF; Baranger C; Le Borgne T; Aquilina L Environ Sci Technol; 2019 May; 53(10):5848-5857. PubMed ID: 31038936 [TBL] [Abstract][Full Text] [Related]
3. Non-pumping reactive wells filled with mixing nano and micro zero-valent iron for nitrate removal from groundwater: Vertical, horizontal, and slanted wells. Hosseini SM; Tosco T; Ataie-Ashtiani B; Simmons CT J Contam Hydrol; 2018 Mar; 210():50-64. PubMed ID: 29519731 [TBL] [Abstract][Full Text] [Related]
4. Experimental investigation on chemical clogging mechanism of loose porous media in recharge process of groundwater heat pump. Yang J; Ren WX; Kang B; Tao Y Environ Technol; 2023 Jun; 44(16):2357-2373. PubMed ID: 34962183 [TBL] [Abstract][Full Text] [Related]
5. Revealing the microbial community structure of clogging materials in dewatering wells differing in physico-chemical parameters in an open-cast mining area. Wang J; Sickinger M; Ciobota V; Herrmann M; Rasch H; Rösch P; Popp J; Küsel K Water Res; 2014 Oct; 63():222-33. PubMed ID: 25010562 [TBL] [Abstract][Full Text] [Related]
6. Integrating NZVI and carbon substrates in a non-pumping reactive wells array for the remediation of a nitrate contaminated aquifer. Hosseini SM; Tosco T J Contam Hydrol; 2015 Aug; 179():182-95. PubMed ID: 26142547 [TBL] [Abstract][Full Text] [Related]
8. Uranium in groundwater - A synopsis based on a large hydrogeochemical data set. Riedel T; Kübeck C Water Res; 2018 Feb; 129():29-38. PubMed ID: 29127832 [TBL] [Abstract][Full Text] [Related]
9. Nitrate Removal by a Novel Lithoautotrophic Nitrate-Reducing, Iron(II)-Oxidizing Culture Enriched from a Pyrite-Rich Limestone Aquifer. Jakus N; Blackwell N; Osenbrück K; Straub D; Byrne JM; Wang Z; Glöckler D; Elsner M; Lueders T; Grathwohl P; Kleindienst S; Kappler A Appl Environ Microbiol; 2021 Jul; 87(16):e0046021. PubMed ID: 34085863 [TBL] [Abstract][Full Text] [Related]
10. The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Shakoor MB; Bibi I; Niazi NK; Shahid M; Nawaz MF; Farooqi A; Naidu R; Rahman MM; Murtaza G; Lüttge A Chemosphere; 2018 May; 199():737-746. PubMed ID: 29475162 [TBL] [Abstract][Full Text] [Related]
11. Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations. Kumar N; Millot R; Battaglia-Brunet F; Omoregie E; Chaurand P; Borschneck D; Bastiaens L; Rose J Environ Sci Pollut Res Int; 2016 Mar; 23(6):5960-8. PubMed ID: 26604198 [TBL] [Abstract][Full Text] [Related]
12. Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado. Li L; Steefel CI; Kowalsky MB; Englert A; Hubbard SS J Contam Hydrol; 2010 Mar; 112(1-4):45-63. PubMed ID: 20036028 [TBL] [Abstract][Full Text] [Related]
13. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer. Hellal J; Guédron S; Huguet L; Schäfer J; Laperche V; Joulian C; Lanceleur L; Burnol A; Ghestem JP; Garrido F; Battaglia-Brunet F J Contam Hydrol; 2015 Sep; 180():56-68. PubMed ID: 26275395 [TBL] [Abstract][Full Text] [Related]
14. Influence of Recharging Wells, Sanitary Collectors and Rain Drainage on Increase Temperature in Pumping Wells on the Groundwater Heat Pump System. Strelec S; Grabar K; Jug J; Kranjčić N Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770481 [TBL] [Abstract][Full Text] [Related]
15. The effect of granular ferric hydroxide amendment on the reduction of nitrate in groundwater by zero-valent iron. Song H; Jeon BH; Chon CM; Kim Y; Nam IH; Schwartz FW; Cho DW Chemosphere; 2013 Nov; 93(11):2767-73. PubMed ID: 24125714 [TBL] [Abstract][Full Text] [Related]
16. Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam. Nitzsche KS; Weigold P; Lösekann-Behrens T; Kappler A; Behrens S Chemosphere; 2015 Nov; 138():47-59. PubMed ID: 26037816 [TBL] [Abstract][Full Text] [Related]
17. Geochemical impacts of groundwater heat pump systems in an urban alluvial aquifer with evaporitic bedrock. Garrido Schneider EA; García-Gil A; Vázquez-Suñè E; Sánchez-Navarro JÁ Sci Total Environ; 2016 Feb; 544():354-68. PubMed ID: 26657381 [TBL] [Abstract][Full Text] [Related]
19. Monitoring nitrate reduction: hydrogeochemistry and clogging potential in raw water wells. Ortmeyer F; Volkova K; Wisotzky F; Wohnlich S; Banning A Environ Monit Assess; 2021 Feb; 193(3):112. PubMed ID: 33543341 [TBL] [Abstract][Full Text] [Related]
20. Role of oxbow lakes in controlling redox geochemistry of shallow groundwater under a heterogeneous fluvial sedimentary environment in an agricultural field: Coexistence of iron and sulfate reduction. Choi BY; Yun ST; Kim KH J Contam Hydrol; 2016; 185-186():28-41. PubMed ID: 26788873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]