These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 38917589)
41. Synthesis of MnFe Bhowmik KL; Debnath A; Nath RK; Saha B Water Sci Technol; 2017 Dec; 76(11-12):3368-3378. PubMed ID: 29236016 [TBL] [Abstract][Full Text] [Related]
42. [Adsorbing capability of chromium-galvanized waste water by yeast-activated sludge]. Yin H; Ye JS; Peng H; Zhang N; Xie DP Huan Jing Ke Xue; 2004 May; 25(3):61-4. PubMed ID: 15327255 [TBL] [Abstract][Full Text] [Related]
43. Batch adsorption studies for chromium removal. Sivamani S; Prince Immanuel V J Environ Sci Eng; 2008 Jan; 50(1):11-6. PubMed ID: 19192921 [TBL] [Abstract][Full Text] [Related]
44. Removal of chromium from industrial waste by using eucalyptus bark. Sarin V; Pant KK Bioresour Technol; 2006 Jan; 97(1):15-20. PubMed ID: 16154498 [TBL] [Abstract][Full Text] [Related]
45. Removal of Brilliant Green Dye from Water Using Gul S; Gul A; Gul H; Khattak R; Ismail M; Khan SU; Khan MS; Aouissi HA; Krauklis A Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676258 [TBL] [Abstract][Full Text] [Related]
47. Novel green strategy for CuO-ZnO-C nanocomposites fabrication using marigold (Tagetes spp.) flower petals extract with and without CTAB treatment for adsorption of Cr(VI) and Congo red dye. Prajapati AK; Mondal MK J Environ Manage; 2021 Jul; 290():112615. PubMed ID: 33906117 [TBL] [Abstract][Full Text] [Related]
48. Validity of zinc oxide nanoparticles biosynthesized in food wastes extract in treating real samples of printing ink wastewater; prediction models using feed-forward neural network (FFNN). Al-Zamzami M; Al-Gheethi A; Alzaeemi SA; Al-Sahari M; Al-Maqtari Q; Noman E Chemosphere; 2024 Aug; 362():142793. PubMed ID: 38972458 [TBL] [Abstract][Full Text] [Related]
49. Green nanotechnology advances: green manufacturing of zinc nanoparticles, characterization, and foliar application on wheat and antibacterial characteristics using Mentha spicata (mint) and Ocimum basilicum (basil) leaf extracts. Doğaroğlu ZG; Uysal Y; Çaylalı Z; Karakulak DS Environ Sci Pollut Res Int; 2023 May; 30(21):60820-60837. PubMed ID: 37039921 [TBL] [Abstract][Full Text] [Related]
50. Efficient removal of Chromium(VI) from wastewater based on magnetic multiwalled carbon nanotubes coupled with deep eutectic solvents. Wang L; Zhu Y; Ma L; Hai X; Li X; Yang Z; Gao Y; Yuan M; Xiong H; Chen M; Ma X Chemosphere; 2024 Aug; 362():142732. PubMed ID: 38950746 [TBL] [Abstract][Full Text] [Related]
51. Enhancing Chromium (VI) removal from synthetic and real tannery effluents by using diatomite-embedded nanopyroxene. Hethnawi A; Khderat W; Hashlamoun K; Kanan A; Nassar NN Chemosphere; 2020 Aug; 252():126523. PubMed ID: 32229355 [TBL] [Abstract][Full Text] [Related]
52. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. Rambabu K; Bharath G; Banat F; Show PL J Hazard Mater; 2021 Jan; 402():123560. PubMed ID: 32759001 [TBL] [Abstract][Full Text] [Related]
53. Removal of chromium (III) by using coal as adsorbent. Anwar J; Shafique U; Salman M; Waheed-uz-Zaman ; Anwar S; Anzano JM J Hazard Mater; 2009 Nov; 171(1-3):797-801. PubMed ID: 19592161 [TBL] [Abstract][Full Text] [Related]
54. An ecological new approach for treating Cr(VI)-containing industrial wastewater: Photochemical reduction. Liu J; Huang K; Xie K; Yang Y; Liu H Water Res; 2016 Apr; 93():187-194. PubMed ID: 26905797 [TBL] [Abstract][Full Text] [Related]
55. Surface functionalization of bamboo leave mediated synthesized SiO Sharma P; Prakash J; Palai T; Kaushal R Environ Res; 2022 Nov; 214(Pt 1):113761. PubMed ID: 35793724 [TBL] [Abstract][Full Text] [Related]
56. Effect of annealing on the spectral and optical characteristics of nano ZnO: Evaluation of adsorption of toxic metal ions from industrial waste water. Radhakrishnan A; Rejani P; Shanavas Khan J; Beena B Ecotoxicol Environ Saf; 2016 Nov; 133():457-65. PubMed ID: 27521961 [TBL] [Abstract][Full Text] [Related]
57. Thermodynamic and breakthrough column studies for the selective sorption of chromium from industrial effluent on activated eucalyptus bark. Sarin V; Singh TS; Pant KK Bioresour Technol; 2006 Nov; 97(16):1986-93. PubMed ID: 16311033 [TBL] [Abstract][Full Text] [Related]
58. Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes. Dima JB; Sequeiros C; Zaritzky NE Chemosphere; 2015 Dec; 141():100-11. PubMed ID: 26151484 [TBL] [Abstract][Full Text] [Related]
59. Simultaneous removal of Cu (II) and Cr (VI) ions from petroleum refinery wastewater using ZnO/Fe Shaba EY; Tijani JO; Jacob JO; Suleiman MAT J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(13-14):1146-1167. PubMed ID: 36601714 [TBL] [Abstract][Full Text] [Related]
60. Treatment of chrome plating wastewater (Cr+6) using activated alumina. Sarkar S; Gupta A Indian J Environ Health; 2003 Jan; 45(1):73-82. PubMed ID: 14723286 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]