These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38917834)
1. Addressing the sources of inter-subject variability in E-field parameters in anodal tDCS stimulation over motor cortical network. Franco-Rosado P; Callejón MA; Reina-Tosina J; Roa LM; Martin-Rodriguez JF; Mir P Phys Med Biol; 2024 Jul; 69(14):. PubMed ID: 38917834 [No Abstract] [Full Text] [Related]
2. Variation of cerebrospinal fluid in specific regions regulates focality in transcranial direct current stimulation. Kashyap R; Bhattacharjee S; Bharath RD; Venkatasubramanian G; Udupa K; Bashir S; Oishi K; Desmond JE; Chen SHA; Guan C Front Hum Neurosci; 2022; 16():952602. PubMed ID: 36118967 [TBL] [Abstract][Full Text] [Related]
3. tDCS induced GABA change is associated with the simulated electric field in M1, an effect mediated by grey matter volume in the MRS voxel. Nandi T; Puonti O; Clarke WT; Nettekoven C; Barron HC; Kolasinski J; Hanayik T; Hinson EL; Berrington A; Bachtiar V; Johnstone A; Winkler AM; Thielscher A; Johansen-Berg H; Stagg CJ Brain Stimul; 2022; 15(5):1153-1162. PubMed ID: 35988862 [TBL] [Abstract][Full Text] [Related]
4. Inter-subject Variability in Electric Fields of Motor Cortical tDCS. Laakso I; Tanaka S; Koyama S; De Santis V; Hirata A Brain Stimul; 2015; 8(5):906-13. PubMed ID: 26026283 [TBL] [Abstract][Full Text] [Related]
5. Cost of focality in TDCS: Interindividual variability in electric fields. Mikkonen M; Laakso I; Tanaka S; Hirata A Brain Stimul; 2020; 13(1):117-124. PubMed ID: 31606449 [TBL] [Abstract][Full Text] [Related]
6. The electric field distributions in anatomical head models during transcranial direct current stimulation for post-stroke rehabilitation. Manoli Z; Parazzini M; Ravazzani P; Samaras T Med Phys; 2017 Jan; 44(1):262-271. PubMed ID: 28044315 [TBL] [Abstract][Full Text] [Related]
7. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS. Edwards D; Cortes M; Datta A; Minhas P; Wassermann EM; Bikson M Neuroimage; 2013 Jul; 74():266-75. PubMed ID: 23370061 [TBL] [Abstract][Full Text] [Related]
8. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. Jamil A; Batsikadze G; Kuo HI; Labruna L; Hasan A; Paulus W; Nitsche MA J Physiol; 2017 Feb; 595(4):1273-1288. PubMed ID: 27723104 [TBL] [Abstract][Full Text] [Related]
9. How does the electric field induced by tDCS influence motor-related connectivity? Model-guided perspectives. Fernandes SR; Callejón-Leblic MA; Ferreira HA Phys Med Biol; 2024 Feb; 69(5):. PubMed ID: 38266295 [TBL] [Abstract][Full Text] [Related]
10. Optimized APPS-tDCS electrode position, size, and distance doubles the on-target stimulation magnitude in 3000 electric field models. Caulfield KA; George MS Sci Rep; 2022 Nov; 12(1):20116. PubMed ID: 36418438 [TBL] [Abstract][Full Text] [Related]
11. Electric fields of motor and frontal tDCS in a standard brain space: A computer simulation study. Laakso I; Tanaka S; Mikkonen M; Koyama S; Sadato N; Hirata A Neuroimage; 2016 Aug; 137():140-151. PubMed ID: 27188218 [TBL] [Abstract][Full Text] [Related]
12. Interindividual differences in posterior fossa morphometry affect cerebellar tDCS-induced electric field strength. Maas RPPWM; Faber J; ; van de Warrenburg BPC; Schutter DJLG Clin Neurophysiol; 2023 Sep; 153():152-165. PubMed ID: 37499446 [TBL] [Abstract][Full Text] [Related]
13. Inter-individual and age-dependent variability in simulated electric fields induced by conventional transcranial electrical stimulation. Antonenko D; Grittner U; Saturnino G; Nierhaus T; Thielscher A; Flöel A Neuroimage; 2021 Jan; 224():117413. PubMed ID: 33011418 [TBL] [Abstract][Full Text] [Related]
14. Use of Computational Modeling to Inform tDCS Electrode Montages for the Promotion of Language Recovery in Post-stroke Aphasia. Galletta EE; Cancelli A; Cottone C; Simonelli I; Tecchio F; Bikson M; Marangolo P Brain Stimul; 2015; 8(6):1108-15. PubMed ID: 26198364 [TBL] [Abstract][Full Text] [Related]
15. Inter-individual variability in current direction for common tDCS montages. Evans C; Zich C; Lee JSA; Ward N; Bestmann S Neuroimage; 2022 Oct; 260():119501. PubMed ID: 35878726 [TBL] [Abstract][Full Text] [Related]
16. Systematic assessment of duration and intensity of anodal transcranial direct current stimulation on primary motor cortex excitability. Tremblay S; Larochelle-Brunet F; Lafleur LP; El Mouderrib S; Lepage JF; Théoret H Eur J Neurosci; 2016 Sep; 44(5):2184-90. PubMed ID: 27336413 [TBL] [Abstract][Full Text] [Related]
17. Reduced Current Spread by Concentric Electrodes in Transcranial Electrical Stimulation (tES). Bortoletto M; Rodella C; Salvador R; Miranda PC; Miniussi C Brain Stimul; 2016; 9(4):525-8. PubMed ID: 27061368 [TBL] [Abstract][Full Text] [Related]
18. The Effect of Transcranial Direct Current Stimulation (tDCS) Electrode Size and Current Intensity on Motor Cortical Excitability: Evidence From Single and Repeated Sessions. Ho KA; Taylor JL; Chew T; Gálvez V; Alonzo A; Bai S; Dokos S; Loo CK Brain Stimul; 2016; 9(1):1-7. PubMed ID: 26350410 [TBL] [Abstract][Full Text] [Related]
19. Cervical trans-spinal direct current stimulation: a modelling-experimental approach. Fernandes SR; Pereira M; Salvador R; Miranda PC; de Carvalho M J Neuroeng Rehabil; 2019 Oct; 16(1):123. PubMed ID: 31653265 [TBL] [Abstract][Full Text] [Related]
20. Current intensity- and polarity-specific online and aftereffects of transcranial direct current stimulation: An fMRI study. Jamil A; Batsikadze G; Kuo HI; Meesen RLJ; Dechent P; Paulus W; Nitsche MA Hum Brain Mapp; 2020 Apr; 41(6):1644-1666. PubMed ID: 31860160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]