These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38917835)

  • 1. Potential use of extracted flax seed mucilage in the construction of macroporous cryo-scaffolds.
    Demir D
    Biomed Mater; 2024 Jul; 19(5):. PubMed ID: 38917835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marine collagen-chitosan-fucoidan cryogels as cell-laden biocomposites envisaging tissue engineering.
    Carvalho DN; López-Cebral R; Sousa RO; Alves AL; Reys LL; Silva SS; Oliveira JM; Reis RL; Silva TH
    Biomed Mater; 2020 Sep; 15(5):055030. PubMed ID: 32570224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility of electrospun cell culture scaffolds made from balangu seed mucilage/PVA composites.
    Allafchian A; Saeedi S; Jalali SAH
    Nanotechnology; 2021 Nov; 33(7):. PubMed ID: 34757957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering.
    Ko HF; Sfeir C; Kumta PN
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1981-97. PubMed ID: 20308112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Biodegradable Chitosan-Polyurethane Cryogel with Switchable Shape Memory.
    Fu CY; Chuang WT; Hsu SH
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9702-9713. PubMed ID: 33600161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of electrospun nanofibers using flaxseed (Linum usitatissimum) mucilage.
    Hadad S; Goli SAH
    Int J Biol Macromol; 2018 Jul; 114():408-414. PubMed ID: 29596931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun plant mucilage nanofibers as biocompatible scaffolds for cell proliferation.
    Urena-Saborio H; Alfaro-Viquez E; Esquivel-Alvarado D; Madrigal-Carballo S; Gunasekaran S
    Int J Biol Macromol; 2018 Aug; 115():1218-1224. PubMed ID: 29702172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional cryogels for biomedical applications.
    Razavi M; Qiao Y; Thakor AS
    J Biomed Mater Res A; 2019 Dec; 107(12):2736-2755. PubMed ID: 31408265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of cell culture scaffolds using polycaprolactone/quince seed mucilage.
    Allafchian A; Jalali SAH; Mousavi SE; Hosseini SS
    Int J Biol Macromol; 2020 Jul; 155():1270-1276. PubMed ID: 31726121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled pore anisotropy in chitosan-gelatin cryogels for use in bone tissue engineering.
    Andres M; Robertson E; Hall A; McBride-Gagyi S; Sell S
    J Biomater Appl; 2024 Feb; 38(7):797-807. PubMed ID: 38278524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroporous Hydrogels Composed Entirely of Synthetic Polypeptides: Biocompatible and Enzyme Biodegradable 3D Cellular Scaffolds.
    Shirbin SJ; Karimi F; Chan NJ; Heath DE; Qiao GG
    Biomacromolecules; 2016 Sep; 17(9):2981-91. PubMed ID: 27472153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable hybrid cryogels functionalized with microparticles as supermacroporous multifunctional biomaterial scaffolds.
    Sami H; Kumar A
    J Biomater Sci Polym Ed; 2013; 24(10):1165-84. PubMed ID: 23713421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of nano-hydroxyapatite/polymer composite scaffolds.
    Xiao X; Liu R; Huang Q
    J Mater Sci Mater Med; 2008 Nov; 19(11):3429-35. PubMed ID: 18574674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of gelatin cryogels reinforced with hydroxyapatites with different morphologies and interfacial bonding.
    Gu L; Zhang Y; Zhang L; Huang Y; Zuo D; Cai Q; Yang X
    Biomed Mater; 2020 Mar; 15(3):035012. PubMed ID: 32031987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional supermacroporous carrageenan-gelatin cryogel matrix for tissue engineering applications.
    Sharma A; Bhat S; Vishnoi T; Nayak V; Kumar A
    Biomed Res Int; 2013; 2013():478279. PubMed ID: 23936806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoresponsive poly(N-vinylcaprolactam) cryogels: synthesis and its biophysical evaluation for tissue engineering applications.
    Srivastava A; Kumar A
    J Mater Sci Mater Med; 2010 Nov; 21(11):2937-45. PubMed ID: 20625836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape memory injectable cryogel based on carboxymethyl chitosan/gelatin for minimally invasive tissue engineering: In vitro and in vivo assays.
    Olov N; Mirzadeh H; Moradi R; Rajabi S; Bagheri-Khoulenjani S
    J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2438-2451. PubMed ID: 35661396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application.
    Ju J; Gu Z; Liu X; Zhang S; Peng X; Kuang T
    Int J Biol Macromol; 2020 Mar; 147():1164-1173. PubMed ID: 31751685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of mucilage polysaccharides, arabinogalactanproteins and cell-wall hemicellulosic polysaccharides isolated from flax seed meal: A wealth of structural moieties.
    Ray S; Paynel F; Morvan C; Lerouge P; Driouich A; Ray B
    Carbohydr Polym; 2013 Apr; 93(2):651-60. PubMed ID: 23499108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave assisted synthesis of polyacrylamide grafted polymeric blend of fenugreek seed mucilage-Polyvinyl alcohol (FSM-PVA-g-PAM) and its characterizations as tissue engineered scaffold and as a drug delivery device.
    Bal T; Swain S
    Daru; 2020 Jun; 28(1):33-44. PubMed ID: 30712231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.