BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38918255)

  • 1. Nanoplasmonic sensors for extracellular vesicles and bacterial membrane vesicles.
    Neettiyath A; Chung K; Liu W; Lee LP
    Nano Converg; 2024 Jun; 11(1):23. PubMed ID: 38918255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Sensors for Extracellular Vesicle Analysis: From Scientific Development to Translational Research.
    Chin LK; Son T; Hong JS; Liu AQ; Skog J; Castro CM; Weissleder R; Lee H; Im H
    ACS Nano; 2020 Nov; 14(11):14528-14548. PubMed ID: 33119256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetically enhanced label-free plasmonic sensing for rapid detection of tumor-derived extracellular vesicles.
    Kwak TJ; Son T; Hong JS; Winter UA; Jeong MH; McLean C; Weissleder R; Lee H; Castro CM; Im H
    Biosens Bioelectron; 2023 Oct; 237():115422. PubMed ID: 37301179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-Enhanced Characterization of Single Extracellular Vesicles.
    Jeong MH; Son T; Im H
    Methods Mol Biol; 2023; 2668():3-13. PubMed ID: 37140785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoplasmonic sensors for biointerfacial science.
    Jackman JA; Rahim Ferhan A; Cho NJ
    Chem Soc Rev; 2017 Jun; 46(12):3615-3660. PubMed ID: 28383083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling Sensitive Phenotypic Profiling of Cancer-Derived Small Extracellular Vesicles Using Surface-Enhanced Raman Spectroscopy Nanotags.
    Zhang W; Jiang L; Diefenbach RJ; Campbell DH; Walsh BJ; Packer NH; Wang Y
    ACS Sens; 2020 Mar; 5(3):764-771. PubMed ID: 32134252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular Vesicle Identification Using Label-Free Surface-Enhanced Raman Spectroscopy: Detection and Signal Analysis Strategies.
    Shin H; Seo D; Choi Y
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33182340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoplasmonic Approaches for Sensitive Detection and Molecular Characterization of Extracellular Vesicles.
    Rojalin T; Phong B; Koster HJ; Carney RP
    Front Chem; 2019; 7():279. PubMed ID: 31134179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the Interaction of Dielectric Nanoparticles with Supported Lipid Membrane Coatings on Nanoplasmonic Arrays.
    Ferhan AR; Ma GJ; Jackman JA; Sut TN; Park JH; Cho NJ
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trends and challenges of refractometric nanoplasmonic biosensors: a review.
    Estevez MC; Otte MA; Sepulveda B; Lechuga LM
    Anal Chim Acta; 2014 Jan; 806():55-73. PubMed ID: 24331040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-Enhanced Single Extracellular Vesicle Analysis for Cholangiocarcinoma Diagnosis.
    Jeong MH; Son T; Tae YK; Park CH; Lee HS; Chung MJ; Park JY; Castro CM; Weissleder R; Jo JH; Bang S; Im H
    Adv Sci (Weinh); 2023 Mar; 10(8):e2205148. PubMed ID: 36698298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards low-cost flexible substrates for nanoplasmonic sensing.
    Polavarapu L; Liz-Marzán LM
    Phys Chem Chem Phys; 2013 Apr; 15(15):5288-300. PubMed ID: 23303134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoplasmonic Sensor Approaches for Sensitive Detection of Disease-Associated Exosomes.
    Amrollahi P; Zheng W; Monk C; Li CZ; Hu TY
    ACS Appl Bio Mater; 2021 Sep; 4(9):6589-6603. PubMed ID: 35006963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Extracellular Vesicles by Surface Plasmon Resonance.
    Im H; Yang K; Lee H; Castro CM
    Methods Mol Biol; 2017; 1660():133-141. PubMed ID: 28828653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Nanoplasmonic Sensors for Environmental Detection and Monitoring.
    Choi I
    J Nanosci Nanotechnol; 2016 May; 16(5):4274-83. PubMed ID: 27483747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent progress in surface-enhanced Raman spectroscopy-based biosensors for the detection of extracellular vesicles.
    Zheng H; Ding Q; Li C; Chen W; Chen X; Lin Q; Wang D; Weng Y; Lin D
    Anal Methods; 2022 Nov; 14(42):4161-4173. PubMed ID: 36254847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Comparison of Protein Adsorption and Conformational Changes on Dielectric-Coated Nanoplasmonic Sensing Arrays.
    Ferhan AR; Jackman JA; Sut TN; Cho NJ
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promises and Challenges of Nanoplasmonic Devices for Refractometric Biosensing.
    Dahlin AB; Wittenberg NJ; Höök F; Oh SH
    Nanophotonics; 2013 Jan; 2(2):83-101. PubMed ID: 24159429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of the N-Terminus Substituted Curvature-Sensing Peptides That Exhibit Highly Sensitive Detection Ability of Bacterial Extracellular Vesicles.
    Kawano K; Yokoyama F; Kamasaka K; Kawamoto J; Ogawa T; Kurihara T; Futaki S
    Chem Pharm Bull (Tokyo); 2021; 69(11):1075-1082. PubMed ID: 34719589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free plasmonic biosensors for point-of-care diagnostics: a review.
    Soler M; Huertas CS; Lechuga LM
    Expert Rev Mol Diagn; 2019 Jan; 19(1):71-81. PubMed ID: 30513011
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.