These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38918317)

  • 1. Quantitative analysis of the slow exchange process by
    Toyama Y; Shimada I
    J Biomol NMR; 2024 Jun; ():. PubMed ID: 38918317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r).
    Otten R; Villali J; Kern D; Mulder FA
    J Am Chem Soc; 2010 Dec; 132(47):17004-14. PubMed ID: 21058670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The folding pathway of an FF domain: characterization of an on-pathway intermediate state under folding conditions by (15)N, (13)C(alpha) and (13)C-methyl relaxation dispersion and (1)H/(2)H-exchange NMR spectroscopy.
    Korzhnev DM; Religa TL; Lundström P; Fersht AR; Kay LE
    J Mol Biol; 2007 Sep; 372(2):497-512. PubMed ID: 17689561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algebraic expressions for Carr-Purcell-Meiboom-Gill relaxation dispersion for N-site chemical exchange.
    Koss H; Rance M; Palmer AG
    J Magn Reson; 2020 Dec; 321():106846. PubMed ID: 33128917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative measurement of exchange dynamics in proteins via (13)C relaxation dispersion of (13)CHD2-labeled samples.
    Rennella E; Schuetz AK; Kay LE
    J Biomol NMR; 2016 Jun; 65(2):59-64. PubMed ID: 27251650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A "Steady-State" Relaxation Dispersion Nuclear Magnetic Resonance Experiment for Studies of Chemical Exchange in Degenerate
    Tugarinov V; Okuno Y; Torricella F; Karamanos TK; Clore GM
    J Phys Chem Lett; 2022 Dec; 13(48):11271-11279. PubMed ID: 36449372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of slow-pulsing artifacts in in-phase
    Chatterjee SD; Ubbink M; van Ingen H
    J Biomol NMR; 2018 Jun; 71(2):69-77. PubMed ID: 29860650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments in deuterium solid-state NMR for the detection of slow motions in proteins.
    Vugmeyster L
    Solid State Nucl Magn Reson; 2021 Feb; 111():101710. PubMed ID: 33450712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing slow chemical exchange in nucleic acids by carbon CEST and low spin-lock field R(1ρ) NMR spectroscopy.
    Zhao B; Hansen AL; Zhang Q
    J Am Chem Soc; 2014 Jan; 136(1):20-3. PubMed ID: 24299272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extending the Sensitivity of CEST NMR Spectroscopy to Micro-to-Millisecond Dynamics in Nucleic Acids Using High-Power Radio-Frequency Fields.
    Rangadurai A; Shi H; Al-Hashimi HM
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11262-11266. PubMed ID: 32168407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensive backbone dynamics in the GCAA RNA tetraloop analyzed using 13C NMR spin relaxation and specific isotope labeling.
    Johnson JE; Hoogstraten CG
    J Am Chem Soc; 2008 Dec; 130(49):16757-69. PubMed ID: 19049467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST.
    Yuwen T; Sekhar A; Kay LE
    J Biomol NMR; 2016 Aug; 65(3-4):143-156. PubMed ID: 27473413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution NMR spin relaxation methods for characterizing chemical exchange in high-molecular-weight systems.
    Palmer AG; Grey MJ; Wang C
    Methods Enzymol; 2005; 394():430-65. PubMed ID: 15808232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CPMG relaxation dispersion NMR experiments measuring glycine 1H alpha and 13C alpha chemical shifts in the 'invisible' excited states of proteins.
    Vallurupalli P; Hansen DF; Lundström P; Kay LE
    J Biomol NMR; 2009 Sep; 45(1-2):45-55. PubMed ID: 19319480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manifestations of slow site exchange processes in solution NMR: a continuous Gaussian exchange model.
    Schurr JM; Fujimoto BS; Diaz R; Robinson BH
    J Magn Reson; 1999 Oct; 140(2):404-31. PubMed ID: 10497047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indirect use of deuterium in solution NMR studies of protein structure and hydrogen bonding.
    Tugarinov V
    Prog Nucl Magn Reson Spectrosc; 2014 Feb; 77():49-68. PubMed ID: 24411830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Exchange.
    Palmer AG; Koss H
    Methods Enzymol; 2019; 615():177-236. PubMed ID: 30638530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity-enhanced chemical exchange saturation transfer (CEST) MRI with least squares optimization of Carr Purcell Meiboom Gill multi-echo echo planar imaging.
    Sun PZ; Wang Y; Lu J
    Contrast Media Mol Imaging; 2014; 9(2):177-81. PubMed ID: 24523063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing the effects of weak homonuclear dipolar coupling with CPMG pulse sequences for static and spinning solids.
    Altenhof AR; Gan Z; Schurko RW
    J Magn Reson; 2022 Apr; 337():107174. PubMed ID: 35279507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting
    Yuwen T; Kay LE
    J Biomol NMR; 2019 Nov; 73(10-11):641-650. PubMed ID: 31646421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.