These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38918348)

  • 1. Temporal Information Processing in the Cerebellum and Basal Ganglia.
    Tanaka M; Kameda M; Okada KI
    Adv Exp Med Biol; 2024; 1455():95-116. PubMed ID: 38918348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebellar Roles in Self-Timing for Sub- and Supra-Second Intervals.
    Ohmae S; Kunimatsu J; Tanaka M
    J Neurosci; 2017 Mar; 37(13):3511-3522. PubMed ID: 28242799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory and motor representations of internalized rhythms in the cerebellum and basal ganglia.
    Kameda M; Niikawa K; Uematsu A; Tanaka M
    Proc Natl Acad Sci U S A; 2023 Jun; 120(24):e2221641120. PubMed ID: 37276394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of the Cerebellum in Motor Preparation and Prediction of Timing.
    Tanaka M; Kunimatsu J; Suzuki TW; Kameda M; Ohmae S; Uematsu A; Takeya R
    Neuroscience; 2021 May; 462():220-234. PubMed ID: 32360700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facilitation of temporal prediction by electrical stimulation to the primate cerebellar nuclei.
    Uematsu A; Ohmae S; Tanaka M
    Neuroscience; 2017 Mar; 346():190-196. PubMed ID: 28131620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different contributions of preparatory activity in the basal ganglia and cerebellum for self-timing.
    Kunimatsu J; Suzuki TW; Ohmae S; Tanaka M
    Elife; 2018 Jul; 7():. PubMed ID: 29963985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural signals regulating motor synchronization in the primate deep cerebellar nuclei.
    Okada KI; Takeya R; Tanaka M
    Nat Commun; 2022 May; 13(1):2504. PubMed ID: 35523898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal Prediction Signals for Periodic Sensory Events in the Primate Central Thalamus.
    Matsuyama K; Tanaka M
    J Neurosci; 2021 Mar; 41(9):1917-1927. PubMed ID: 33452224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporally specific sensory signals for the detection of stimulus omission in the primate deep cerebellar nuclei.
    Ohmae S; Uematsu A; Tanaka M
    J Neurosci; 2013 Sep; 33(39):15432-41. PubMed ID: 24068812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entrained neuronal activity to periodic visual stimuli in the primate striatum compared with the cerebellum.
    Kameda M; Ohmae S; Tanaka M
    Elife; 2019 Sep; 8():. PubMed ID: 31490120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between Pupil Size and Subjective Passage of Time in Non-Human Primates.
    Suzuki TW; Kunimatsu J; Tanaka M
    J Neurosci; 2016 Nov; 36(44):11331-11337. PubMed ID: 27807173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of Lateral Cerebellum in Proactive Control of Saccades.
    Kunimatsu J; Suzuki TW; Tanaka M
    J Neurosci; 2016 Jun; 36(26):7066-74. PubMed ID: 27358462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of primate basal ganglia and frontal cortex in the internal generation of movements. I. Preparatory activity in the anterior striatum.
    Schultz W; Romo R
    Exp Brain Res; 1992; 91(3):363-84. PubMed ID: 1483512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognitive signals in the primate motor thalamus predict saccade timing.
    Tanaka M
    J Neurosci; 2007 Oct; 27(44):12109-18. PubMed ID: 17978052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies.
    Jueptner M; Weiller C
    Brain; 1998 Aug; 121 ( Pt 8)():1437-49. PubMed ID: 9712006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maturation of Temporal Saccade Prediction from Childhood to Adulthood: Predictive Saccades, Reduced Pupil Size, and Blink Synchronization.
    Calancie OG; Brien DC; Huang J; Coe BC; Booij L; Khalid-Khan S; Munoz DP
    J Neurosci; 2022 Jan; 42(1):69-80. PubMed ID: 34759032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The primate striatum: neuronal activity in relation to spatial attention versus motor preparation.
    Boussaoud D; Kermadi I
    Eur J Neurosci; 1997 Oct; 9(10):2152-68. PubMed ID: 9421175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of primate basal ganglia and frontal cortex in the internal generation of movements. III. Neuronal activity in the supplementary motor area.
    Romo R; Schultz W
    Exp Brain Res; 1992; 91(3):396-407. PubMed ID: 1483514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory.
    Mazzoni P; Bracewell RM; Barash S; Andersen RA
    J Neurophysiol; 1996 Sep; 76(3):1439-56. PubMed ID: 8890265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consensus paper: Decoding the Contributions of the Cerebellum as a Time Machine. From Neurons to Clinical Applications.
    Bareš M; Apps R; Avanzino L; Breska A; D'Angelo E; Filip P; Gerwig M; Ivry RB; Lawrenson CL; Louis ED; Lusk NA; Manto M; Meck WH; Mitoma H; Petter EA
    Cerebellum; 2019 Apr; 18(2):266-286. PubMed ID: 30259343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.