These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38918369)

  • 1. Deep representation learning of chemical-induced transcriptional profile for phenotype-based drug discovery.
    Tong X; Qu N; Kong X; Ni S; Zhou J; Wang K; Zhang L; Wen Y; Shi J; Zhang S; Li X; Zheng M
    Nat Commun; 2024 Jun; 15(1):5378. PubMed ID: 38918369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.
    Gupta R; Srivastava D; Sahu M; Tiwari S; Ambasta RK; Kumar P
    Mol Divers; 2021 Aug; 25(3):1315-1360. PubMed ID: 33844136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine and deep learning approaches for cancer drug repurposing.
    Issa NT; Stathias V; Schürer S; Dakshanamurthy S
    Semin Cancer Biol; 2021 Jan; 68():132-142. PubMed ID: 31904426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning prediction of chemical-induced dose-dependent and context-specific multiplex phenotype responses and its application to personalized alzheimer's disease drug repurposing.
    Wu Y; Liu Q; Qiu Y; Xie L
    PLoS Comput Biol; 2022 Aug; 18(8):e1010367. PubMed ID: 35951653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning in image-based phenotypic drug discovery.
    Krentzel D; Shorte SL; Zimmer C
    Trends Cell Biol; 2023 Jul; 33(7):538-554. PubMed ID: 36623998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review on Deep Learning-driven Drug Discovery: Strategies, Tools and Applications.
    Sumathi S; Suganya K; Swathi K; Sudha B; Poornima A; Varghese CA; Aswathy R
    Curr Pharm Des; 2023 May; 29(13):1013-1025. PubMed ID: 37055908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery.
    Wang X; Liu M; Zhang Y; He S; Qin C; Li Y; Lu T
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of drug efficacy from transcriptional profiles with deep learning.
    Zhu J; Wang J; Wang X; Gao M; Guo B; Gao M; Liu J; Yu Y; Wang L; Kong W; An Y; Liu Z; Sun X; Huang Z; Zhou H; Zhang N; Zheng R; Xie Z
    Nat Biotechnol; 2021 Nov; 39(11):1444-1452. PubMed ID: 34140681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing.
    Zhao K; So HC
    Methods Mol Biol; 2019; 1903():219-237. PubMed ID: 30547445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eravacycline, an antibacterial drug, repurposed for pancreatic cancer therapy: insights from a molecular-based deep learning model.
    Jabarin A; Shtar G; Feinshtein V; Mazuz E; Shapira B; Ben-Shabat S; Rokach L
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38647152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug repurposing for viral cancers: A paradigm of machine learning, deep learning, and virtual screening-based approaches.
    Ahmed F; Kang IS; Kim KH; Asif A; Rahim CSA; Samantasinghar A; Memon FH; Choi KH
    J Med Virol; 2023 Apr; 95(4):e28693. PubMed ID: 36946499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generative chemistry: drug discovery with deep learning generative models.
    Bian Y; Xie XQ
    J Mol Model; 2021 Feb; 27(3):71. PubMed ID: 33543405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel drug repurposing approach for non-small cell lung cancer using deep learning.
    Li B; Dai C; Wang L; Deng H; Li Y; Guan Z; Ni H
    PLoS One; 2020; 15(6):e0233112. PubMed ID: 32525938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus.
    Reker D; Rodrigues T; Schneider P; Schneider G
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4067-72. PubMed ID: 24591595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological profiling for drug discovery in the era of deep learning.
    Tang Q; Ratnayake R; Seabra G; Jiang Z; Fang R; Cui L; Ding Y; Kahveci T; Bian J; Li C; Luesch H; Li Y
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38886164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning identifies explainable reasoning paths of mechanism of action for drug repurposing from multilayer biological network.
    Yang J; Li Z; Wu WKK; Yu S; Xu Z; Chu Q; Zhang Q
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36347526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-Based Drug Discovery with Deep Learning.
    Özçelik R; van Tilborg D; Jiménez-Luna J; Grisoni F
    Chembiochem; 2023 Jul; 24(13):e202200776. PubMed ID: 37014633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent trends in artificial intelligence-driven identification and development of anti-neurodegenerative therapeutic agents.
    Kashyap K; Siddiqi MI
    Mol Divers; 2021 Aug; 25(3):1517-1539. PubMed ID: 34282519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Addressing Noise and Estimating Uncertainty in Biomedical Data through the Exploration of Chemical Space.
    deAndrés-Galiana EJ; Fernández-Martínez JL; Fernández-Brillet L; Cernea A; Kloczkowski A
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.