These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 38918538)
1. Experiment-guided tuning of muscle-tendon parameters to estimate muscle fiber lengths and passive forces. Luis I; Afschrift M; Gutierrez-Farewik EM Sci Rep; 2024 Jun; 14(1):14652. PubMed ID: 38918538 [TBL] [Abstract][Full Text] [Related]
2. Insights into muscle metabolic energetics: Modelling muscle-tendon mechanics and metabolic rates during walking across speeds. Luis I; Afschrift M; De Groote F; Gutierrez-Farewik EM PLoS Comput Biol; 2024 Sep; 20(9):e1012411. PubMed ID: 39269982 [TBL] [Abstract][Full Text] [Related]
3. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking. Markowitz J; Herr H PLoS Comput Biol; 2016 May; 12(5):e1004912. PubMed ID: 27175486 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of musculoskeletal models, scaling methods, and performance criteria for estimating muscle excitations and fiber lengths across walking speeds. Luis I; Afschrift M; De Groote F; Gutierrez-Farewik EM Front Bioeng Biotechnol; 2022; 10():1002731. PubMed ID: 36277379 [TBL] [Abstract][Full Text] [Related]
5. Fibre operating lengths of human lower limb muscles during walking. Arnold EM; Delp SL Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1530-9. PubMed ID: 21502124 [TBL] [Abstract][Full Text] [Related]
6. How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds. Arnold EM; Hamner SR; Seth A; Millard M; Delp SL J Exp Biol; 2013 Jun; 216(Pt 11):2150-60. PubMed ID: 23470656 [TBL] [Abstract][Full Text] [Related]
7. Ultrasound-Based Optimal Parameter Estimation Improves Assessment of Calf Muscle-Tendon Interaction During Walking. Delabastita T; Afschrift M; Vanwanseele B; De Groote F Ann Biomed Eng; 2020 Feb; 48(2):722-733. PubMed ID: 31691028 [TBL] [Abstract][Full Text] [Related]
8. Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique. Modenese L; Ceseracciu E; Reggiani M; Lloyd DG J Biomech; 2016 Jan; 49(2):141-8. PubMed ID: 26776930 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling. Modenese L; Montefiori E; Wang A; Wesarg S; Viceconti M; Mazzà C J Biomech; 2018 May; 73():108-118. PubMed ID: 29673935 [TBL] [Abstract][Full Text] [Related]
10. Subject-specific tendon-aponeurosis definition in Hill-type model predicts higher muscle forces in dynamic tasks. Gerus P; Rao G; Berton E PLoS One; 2012; 7(8):e44406. PubMed ID: 22952973 [TBL] [Abstract][Full Text] [Related]
11. The influence of maximum isometric muscle force scaling on estimated muscle forces from musculoskeletal models of children with cerebral palsy. Kainz H; Goudriaan M; Falisse A; Huenaerts C; Desloovere K; De Groote F; Jonkers I Gait Posture; 2018 Sep; 65():213-220. PubMed ID: 30558934 [TBL] [Abstract][Full Text] [Related]
12. A new method for estimating subject-specific muscle-tendon parameters of the knee joint actuators: a simulation study. Van Campen A; Pipeleers G; De Groote F; Jonkers I; De Schutter J Int J Numer Method Biomed Eng; 2014 Oct; 30(10):969-87. PubMed ID: 24753493 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of a deformable musculoskeletal model for estimating muscle-tendon lengths during crouch gait. Arnold AS; Blemker SS; Delp SL Ann Biomed Eng; 2001 Mar; 29(3):263-74. PubMed ID: 11310788 [TBL] [Abstract][Full Text] [Related]
14. Influence of musculoskeletal model parameter values on prediction of accurate knee contact forces during walking. Serrancolí G; Kinney AL; Fregly BJ Med Eng Phys; 2020 Nov; 85():35-47. PubMed ID: 33081962 [TBL] [Abstract][Full Text] [Related]
15. On the ascent: the soleus operating length is conserved to the ascending limb of the force-length curve across gait mechanics in humans. Rubenson J; Pires NJ; Loi HO; Pinniger GJ; Shannon DG J Exp Biol; 2012 Oct; 215(Pt 20):3539-51. PubMed ID: 22771749 [TBL] [Abstract][Full Text] [Related]
16. On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton. Chen W; Wu S; Zhou T; Xiong C Bioinspir Biomim; 2018 Dec; 14(1):016012. PubMed ID: 30511650 [TBL] [Abstract][Full Text] [Related]
17. Plantarflexor metabolics are sensitive to resting ankle angle and optimal fiber length in computational simulations of gait. Baxter JR; Hast MW Gait Posture; 2019 Jan; 67():194-200. PubMed ID: 30366212 [TBL] [Abstract][Full Text] [Related]
18. Optimal muscle fascicle length and tendon stiffness for maximising gastrocnemius efficiency during human walking and running. Lichtwark GA; Wilson AM J Theor Biol; 2008 Jun; 252(4):662-73. PubMed ID: 18374362 [TBL] [Abstract][Full Text] [Related]
19. History-dependence of muscle slack length following contraction and stretch in the human vastus lateralis. Stubbs PW; Walsh LD; D'Souza A; Héroux ME; Bolsterlee B; Gandevia SC; Herbert RD J Physiol; 2018 Jun; 596(11):2121-2129. PubMed ID: 29604053 [TBL] [Abstract][Full Text] [Related]
20. Construction and Simulation of Biomechanical Model of Human Hip Joint Muscle-Tendon Assisted by Elastic External Tendon by Hill Muscle Model. Luo X; Cai G; Ma K; Cai A Comput Intell Neurosci; 2022; 2022():1987345. PubMed ID: 35958782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]