BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38919374)

  • 61. Al/P- and Ga/P-Based Frustrated Lewis Pairs and Electronically Unsaturated Substrates: Ring Cleavage and Ring Closure, C-C and C-N Bond Formation.
    Pleschka D; Uebing M; Lange M; Hepp A; Wübker AL; Hansen MR; Würthwein EU; Uhl W
    Chemistry; 2019 Jul; 25(39):9315-9325. PubMed ID: 31081975
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Reaction of a bridged frustrated Lewis pair with nitric oxide: a kinetics study.
    Pereira JC; Sajid M; Kehr G; Wright AM; Schirmer B; Qu ZW; Grimme S; Erker G; Ford PC
    J Am Chem Soc; 2014 Jan; 136(1):513-9. PubMed ID: 24328325
    [TBL] [Abstract][Full Text] [Related]  

  • 63. N,N-addition of frustrated Lewis pairs to nitric oxide: an easy entry to a unique family of aminoxyl radicals.
    Sajid M; Stute A; Cardenas AJ; Culotta BJ; Hepperle JA; Warren TH; Schirmer B; Grimme S; Studer A; Daniliuc CG; Fröhlich R; Petersen JL; Kehr G; Erker G
    J Am Chem Soc; 2012 Jun; 134(24):10156-68. PubMed ID: 22548454
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Aromaticity-promoted CO
    Zhuang D; Rouf AM; Li Y; Dai C; Zhu J
    Chem Asian J; 2020 Jan; 15(2):266-272. PubMed ID: 31763760
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electronic structure trends in N-heterocyclic carbenes (NHCs) with varying number of nitrogen atoms and NHC-transition-metal bond properties.
    Bernhammer JC; Frison G; Huynh HV
    Chemistry; 2013 Sep; 19(38):12892-905. PubMed ID: 23955586
    [TBL] [Abstract][Full Text] [Related]  

  • 66. New Insights in Frustrated Lewis Pair Chemistry with Azides.
    Boom DHA; Jupp AR; Nieger M; Ehlers AW; Slootweg JC
    Chemistry; 2019 Oct; 25(58):13299-13308. PubMed ID: 31497899
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A challenge to chemical intuition: donor-acceptor interactions in H3B-L and H2B+-L (L=CO; EC5H5, E=N-Bi).
    Erhardt S; Frenking G
    Chemistry; 2006 Jun; 12(17):4620-9. PubMed ID: 16598798
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Computational Design of Frustrated Lewis Pairs as a Strategy for Catalytic Hydrogen Activation and Hydrogenation Catalyst.
    Dagnaw WM; Mohammed AM
    ACS Omega; 2023 Mar; 8(9):8488-8496. PubMed ID: 36910957
    [TBL] [Abstract][Full Text] [Related]  

  • 69. FLP-type nitrile activation and cyclic ether ring-opening by halo-borane nonagermanide-cluster Lewis acid-base pairs.
    Wallach C; Geitner FS; Fässler TF
    Chem Sci; 2021 Apr; 12(20):6969-6976. PubMed ID: 34123324
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Frustrated Lewis Acid-Base-Pair-Catalyzed Amine-Borane Dehydrogenation.
    Bhattacharjee I; Bhunya S; Paul A
    Inorg Chem; 2020 Jan; 59(2):1046-1056. PubMed ID: 31909996
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The B-H...H-P dihydrogen bonding in ion pair complexes [(CF(3))(3)BH(-)][HPH(3-n)(Me)(n)(+)] (n = 0-3) and its implication in H(2) elimination and activation reactions.
    Gao S; Wu W; Mo Y
    J Phys Chem A; 2009 Jul; 113(28):8108-17. PubMed ID: 19555090
    [TBL] [Abstract][Full Text] [Related]  

  • 72. On the concept of frustrated Lewis pairs.
    Fontaine FG; Stephan DW
    Philos Trans A Math Phys Eng Sci; 2017 Aug; 375(2101):. PubMed ID: 28739963
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Probing the Charge Transfer in a Frustrated Lewis Pair by Resonance Raman Spectroscopy and DFT Calculations.
    Marques LR; Ando RA
    Chemphyschem; 2021 Mar; 22(6):522-525. PubMed ID: 33512751
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(6):993-1022. PubMed ID: 23730732
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Understanding the C-F Bond Activation Mediated by Frustrated Lewis Pairs: Crucial Role of Non-covalent Interactions.
    Cabrera-Trujillo JJ; Fernández I
    Chemistry; 2021 Feb; 27(11):3823-3831. PubMed ID: 33231334
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Frustrated Lewis pair-mediated hydro-dehalogenation: crucial role of non-covalent interactions.
    Mondal H; Chattaraj PK
    J Mol Model; 2024 Jun; 30(7):198. PubMed ID: 38842625
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Olefin-Borane Interactions in Donor-π-Acceptor Fluorophores that Undergo Frustrated-Lewis-Pair-Type Reactions.
    Oshimizu R; Ando N; Yamaguchi S
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202209394. PubMed ID: 35938732
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Electronic control in frustrated Lewis pair chemistry: adduct formation of intramolecular FLP systems with -P(C(6)F(5))(2) Lewis base components.
    Stute A; Kehr G; Daniliuc CG; Fröhlich R; Erker G
    Dalton Trans; 2013 Apr; 42(13):4487-99. PubMed ID: 23340589
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Theoretical description of halogen bonding - an insight based on the natural orbitals for chemical valence combined with the extended-transition-state method (ETS-NOCV).
    Mitoraj MP; Michalak A
    J Mol Model; 2013 Nov; 19(11):4681-8. PubMed ID: 22669533
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A new look at the ylidic bond in phosphorus ylides and related compounds: energy decomposition analysis combined with a domain-averaged fermi hole analysis.
    Calhorda MJ; Krapp A; Frenking G
    J Phys Chem A; 2007 Apr; 111(15):2859-69. PubMed ID: 17388399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.