BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38919401)

  • 1. The molecular and cellular choreography of early mammalian lung development.
    Yang X; Chen Y; Yang Y; Li S; Mi P; Jing N
    Med Rev (2021); 2024 Jun; 4(3):192-206. PubMed ID: 38919401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osr1 functions downstream of Hedgehog pathway to regulate foregut development.
    Han L; Xu J; Grigg E; Slack M; Chaturvedi P; Jiang R; Zorn AM
    Dev Biol; 2017 Jul; 427(1):72-83. PubMed ID: 28501478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FOXF1 transcription factor promotes lung morphogenesis by inducing cellular proliferation in fetal lung mesenchyme.
    Ustiyan V; Bolte C; Zhang Y; Han L; Xu Y; Yutzey KE; Zorn AM; Kalin TV; Shannon JM; Kalinichenko VV
    Dev Biol; 2018 Nov; 443(1):50-63. PubMed ID: 30153454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene regulatory networks governing lung specification.
    Rankin SA; Zorn AM
    J Cell Biochem; 2014 Aug; 115(8):1343-50. PubMed ID: 24644080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular crosstalk in tracheal development and its recurrence in adult tissue regeneration.
    Kiyokawa H; Morimoto M
    Dev Dyn; 2021 Nov; 250(11):1552-1567. PubMed ID: 33840142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PI3K signaling specifies proximal-distal fate by driving a developmental gene regulatory network in SOX9+ mouse lung progenitors.
    Khattar D; Fernandes S; Snowball J; Guo M; Gillen MC; Jain SS; Sinner D; Zacharias W; Swarr DT
    Elife; 2022 Aug; 11():. PubMed ID: 35976093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One shall become two: Separation of the esophagus and trachea from the common foregut tube.
    Billmyre KK; Hutson M; Klingensmith J
    Dev Dyn; 2015 Mar; 244(3):277-88. PubMed ID: 25329576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compartmentalization of the foregut tube: developmental origins of the trachea and esophagus.
    Fausett SR; Klingensmith J
    Wiley Interdiscip Rev Dev Biol; 2012; 1(2):184-202. PubMed ID: 23801435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epithelial-mesenchymal interactions in the developing lung.
    Shannon JM; Hyatt BA
    Annu Rev Physiol; 2004; 66():625-45. PubMed ID: 14977416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-cell Transcriptome Profiling reveals Dermal and Epithelial cell fate decisions during Embryonic Hair Follicle Development.
    Ge W; Tan SJ; Wang SH; Li L; Sun XF; Shen W; Wang X
    Theranostics; 2020; 10(17):7581-7598. PubMed ID: 32685006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparing for the first breath: genetic and cellular mechanisms in lung development.
    Morrisey EE; Hogan BL
    Dev Cell; 2010 Jan; 18(1):8-23. PubMed ID: 20152174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lung growth and development.
    Chinoy MR
    Front Biosci; 2003 Jan; 8():d392-415. PubMed ID: 12456356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the mid-foregut transcriptome identifies genes regulated during lung bud induction.
    Millien G; Beane J; Lenburg M; Tsao PN; Lu J; Spira A; Ramirez MI
    Gene Expr Patterns; 2008 Jan; 8(2):124-39. PubMed ID: 18023262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fate map of the murine pancreas buds reveals a multipotent ventral foregut organ progenitor.
    Angelo JR; Guerrero-Zayas MI; Tremblay KD
    PLoS One; 2012; 7(7):e40707. PubMed ID: 22815796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of lung organoids from human pluripotent stem cells in vitro.
    Miller AJ; Dye BR; Ferrer-Torres D; Hill DR; Overeem AW; Shea LD; Spence JR
    Nat Protoc; 2019 Feb; 14(2):518-540. PubMed ID: 30664680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterning and plasticity in development of the respiratory lineage.
    Domyan ET; Sun X
    Dev Dyn; 2011 Mar; 240(3):477-85. PubMed ID: 21337460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting mammalian reproduction with spatial transcriptomics.
    Zhang X; Cao Q; Rajachandran S; Grow EJ; Evans M; Chen H
    Hum Reprod Update; 2023 Nov; 29(6):794-810. PubMed ID: 37353907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multipotent Embryonic Lung Progenitors: Foundational Units of In Vitro and In Vivo Lung Organogenesis.
    Ikonomou L; Yampolskaya M; Mehta P
    Adv Exp Med Biol; 2023; 1413():49-70. PubMed ID: 37195526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual functions of ASCIZ in the DNA base damage response and pulmonary organogenesis.
    Jurado S; Smyth I; van Denderen B; Tenis N; Hammet A; Hewitt K; Ng JL; McNees CJ; Kozlov SV; Oka H; Kobayashi M; Conlan LA; Cole TJ; Yamamoto K; Taniguchi Y; Takeda S; Lavin MF; Heierhorst J
    PLoS Genet; 2010 Oct; 6(10):e1001170. PubMed ID: 20975950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed differentiation of human pluripotent stem cells into diverse organ-specific mesenchyme of the digestive and respiratory systems.
    Kishimoto K; Iwasawa K; Sorel A; Ferran-Heredia C; Han L; Morimoto M; Wells JM; Takebe T; Zorn AM
    Nat Protoc; 2022 Nov; 17(11):2699-2719. PubMed ID: 35978039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.