These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 38919956)

  • 21. Advances in omics research on peanut response to biotic stresses.
    Huang R; Li H; Gao C; Yu W; Zhang S
    Front Plant Sci; 2023; 14():1101994. PubMed ID: 37284721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antioxidant defense in cotton under environmental stresses: Unraveling the crucial role of a universal defense regulator for enhanced cotton sustainability.
    Sheri V; Kumar M; Jaconis S; Zhang B
    Plant Physiol Biochem; 2023 Nov; 204():108141. PubMed ID: 37926000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drought and heat stress: insights into tolerance mechanisms and breeding strategies for pigeonpea improvement.
    Bakala HS; Devi J; Singh G; Singh I
    Planta; 2024 Apr; 259(5):123. PubMed ID: 38622376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrating Omics and Gene Editing Tools for Rapid Improvement of Traditional Food Plants for Diversified and Sustainable Food Security.
    Kumar A; Anju T; Kumar S; Chhapekar SS; Sreedharan S; Singh S; Choi SR; Ramchiary N; Lim YP
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Omics and CRISPR-Cas9 Approaches for Molecular Insight, Functional Gene Analysis, and Stress Tolerance Development in Crops.
    Razzaq MK; Aleem M; Mansoor S; Khan MA; Rauf S; Iqbal S; Siddique KHM
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33525517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developing future heat-resilient vegetable crops.
    Saeed F; Chaudhry UK; Raza A; Charagh S; Bakhsh A; Bohra A; Ali S; Chitikineni A; Saeed Y; Visser RGF; Siddique KHM; Varshney RK
    Funct Integr Genomics; 2023 Jan; 23(1):47. PubMed ID: 36692535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement.
    Zenda T; Wang N; Dong A; Zhou Y; Duan H
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of metabolomic quantitative trait locus mapping and osmotic adjustment traits for the improvement of crop yields under environmental stresses.
    Abdelrahman M; Burritt DJ; Tran LP
    Semin Cell Dev Biol; 2018 Nov; 83():86-94. PubMed ID: 28668354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrating omic approaches for abiotic stress tolerance in soybean.
    Deshmukh R; Sonah H; Patil G; Chen W; Prince S; Mutava R; Vuong T; Valliyodan B; Nguyen HT
    Front Plant Sci; 2014; 5():244. PubMed ID: 24917870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement.
    Ramalingam A; Kudapa H; Pazhamala LT; Weckwerth W; Varshney RK
    Front Plant Sci; 2015; 6():1116. PubMed ID: 26734026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Omics for the Improvement of Abiotic, Biotic, and Agronomic Traits in Major Cereal Crops: Applications, Challenges, and Prospects.
    Kaur B; Sandhu KS; Kamal R; Kaur K; Singh J; Röder MS; Muqaddasi QH
    Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685799
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives.
    Shen S; Zhan C; Yang C; Fernie AR; Luo J
    Mol Plant; 2023 Jan; 16(1):43-63. PubMed ID: 36114669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Abiotic Stress and Belowground Microbiome: The Potential of Omics Approaches.
    Sandrini M; Nerva L; Sillo F; Balestrini R; Chitarra W; Zampieri E
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards doubling fibre yield for cotton in the semiarid agricultural area by increasing tolerance to drought, heat and salinity simultaneously.
    Esmaeili N; Cai Y; Tang F; Zhu X; Smith J; Mishra N; Hequet E; Ritchie G; Jones D; Shen G; Payton P; Zhang H
    Plant Biotechnol J; 2021 Mar; 19(3):462-476. PubMed ID: 32902115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioinformatics Resources for Plant Abiotic Stress Responses: State of the Art and Opportunities in the Fast Evolving -Omics Era.
    Ambrosino L; Colantuono C; Diretto G; Fiore A; Chiusano ML
    Plants (Basel); 2020 May; 9(5):. PubMed ID: 32384671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Comprehensive Review on Chickpea (
    Arriagada O; Cacciuttolo F; Cabeza RA; Carrasco B; Schwember AR
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops.
    Li T; Wang YH; Liu JX; Feng K; Xu ZS; Xiong AS
    Crit Rev Biotechnol; 2019 Aug; 39(5):680-692. PubMed ID: 31068014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.