These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation. Kim R; Nam Y J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604 [TBL] [Abstract][Full Text] [Related]
6. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943 [TBL] [Abstract][Full Text] [Related]
7. Carbon-Fiber Based Microelectrode Array Embedded with a Biodegradable Silk Support for In Vivo Neural Recording. Lee Y; Kong C; Chang JW; Jun SB J Korean Med Sci; 2019 Jan; 34(4):e24. PubMed ID: 30686948 [TBL] [Abstract][Full Text] [Related]
12. Highly Stretchable, Compliant, Polymeric Microelectrode Arrays for In Vivo Electrophysiological Interfacing. Qi D; Liu Z; Liu Y; Jiang Y; Leow WR; Pal M; Pan S; Yang H; Wang Y; Zhang X; Yu J; Li B; Yu Z; Wang W; Chen X Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28869690 [TBL] [Abstract][Full Text] [Related]
13. Electrodeposited PEDOT:Nafion Composite for Neural Recording and Stimulation. Carli S; Bianchi M; Zucchini E; Di Lauro M; Prato M; Murgia M; Fadiga L; Biscarini F Adv Healthc Mater; 2019 Oct; 8(19):e1900765. PubMed ID: 31489795 [TBL] [Abstract][Full Text] [Related]
14. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Lacour SP; Benmerah S; Tarte E; FitzGerald J; Serra J; McMahon S; Fawcett J; Graudejus O; Yu Z; Morrison B Med Biol Eng Comput; 2010 Oct; 48(10):945-54. PubMed ID: 20535574 [TBL] [Abstract][Full Text] [Related]
15. Soft conductive micropillar electrode arrays for biologically relevant electrophysiological recording. Liu Y; McGuire AF; Lou HY; Li TL; Tok JB; Cui B; Bao Z Proc Natl Acad Sci U S A; 2018 Nov; 115(46):11718-11723. PubMed ID: 30377271 [TBL] [Abstract][Full Text] [Related]
17. A mechanically adaptive hydrogel neural interface based on silk fibroin for high-efficiency neural activity recording. Ding J; Chen Z; Liu X; Tian Y; Jiang J; Qiao Z; Zhang Y; Xiao Z; Wei D; Sun J; Luo F; Zhou L; Fan H Mater Horiz; 2022 Aug; 9(8):2215-2225. PubMed ID: 35723211 [TBL] [Abstract][Full Text] [Related]
18. Electropolymerization processing of side-chain engineered EDOT for high performance microelectrode arrays. Ghazal M; Susloparova A; Lefebvre C; Daher Mansour M; Ghodhbane N; Melot A; Scholaert C; Guérin D; Janel S; Barois N; Colin M; Buée L; Yger P; Halliez S; Coffinier Y; Pecqueur S; Alibart F Biosens Bioelectron; 2023 Oct; 237():115538. PubMed ID: 37506488 [TBL] [Abstract][Full Text] [Related]
19. Carbon Nanotube-Based Printed All-Organic Microelectrode Arrays for Neural Stimulation and Recording. Murakami T; Yada N; Yoshida S Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793223 [TBL] [Abstract][Full Text] [Related]
20. Magnesium-based biodegradable microelectrodes for neural recording. Zhang C; Wen TH; Razak KA; Lin J; Xu C; Seo C; Villafana E; Jimenez H; Liu H Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110614. PubMed ID: 32204062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]