These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 38919990)
41. Tentacle Microelectrode Arrays Uncover Soft Boundary Neurons in Hippocampal CA1. Lv S; Mo F; Xu Z; Wang Y; Yang G; Han M; Jing L; Xu W; Duan Y; Liu Y; Li M; Liu J; Luo J; Wang M; Song Y; Wu Y; Cai X Adv Sci (Weinh); 2024 Aug; 11(29):e2401670. PubMed ID: 38828784 [TBL] [Abstract][Full Text] [Related]
42. A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces. Ferguson M; Sharma D; Ross D; Zhao F Adv Healthc Mater; 2019 Oct; 8(19):e1900558. PubMed ID: 31464094 [TBL] [Abstract][Full Text] [Related]
43. Principles of functional neural mapping using an intracortical ultra-density microelectrode array (ultra-density MEA). Guo L J Neural Eng; 2020 Jun; 17(3):036018. PubMed ID: 32365334 [TBL] [Abstract][Full Text] [Related]
44. Conductive polymer combined silk fiber bundle for bioelectrical signal recording. Tsukada S; Nakashima H; Torimitsu K PLoS One; 2012; 7(4):e33689. PubMed ID: 22493670 [TBL] [Abstract][Full Text] [Related]
45. Au Hierarchical Nanostructure-Based Surface Modification of Microelectrodes for Improved Neural Signal Recording. Woo H; Kim S; Nam H; Choi W; Shin K; Kim K; Yoon S; Kim GH; Kim J; Lim G Anal Chem; 2021 Aug; 93(34):11765-11774. PubMed ID: 34387479 [TBL] [Abstract][Full Text] [Related]
46. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording. Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339 [TBL] [Abstract][Full Text] [Related]
47. Development of flexible microelectrode arrays for recording cortical surface field potentials. Myllymaa S; Myllymaa K; Korhonen H; Gureviciene I; Djupsund K; Tanila H; Lappalainen R Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3200-3. PubMed ID: 19163387 [TBL] [Abstract][Full Text] [Related]
48. A flexible perforated microelectrode array probe for action potential recording in nerve and muscle tissues. González C; RodrĂguez M J Neurosci Methods; 1997 Apr; 72(2):189-95. PubMed ID: 9133584 [TBL] [Abstract][Full Text] [Related]
49. Plateau-Shaped Flexible Polymer Microelectrode Array for Neural Recording. Kim JM; Im C; Lee WR Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30965988 [TBL] [Abstract][Full Text] [Related]
51. Highly flexible and lightweight organic solar cells on biocompatible silk fibroin. Liu Y; Qi N; Song T; Jia M; Xia Z; Yuan Z; Yuan W; Zhang KQ; Sun B ACS Appl Mater Interfaces; 2014 Dec; 6(23):20670-5. PubMed ID: 25405590 [TBL] [Abstract][Full Text] [Related]
52. Extracellular Recording of Entire Neural Networks Using a Dual-Mode Microelectrode Array With 19584 Electrodes and High SNR. Yuan X; Hierlemann A; Frey U IEEE J Solid-State Circuits; 2021 Aug; 56(8):2466-2475. PubMed ID: 34326555 [TBL] [Abstract][Full Text] [Related]
53. A simultaneous optical and electrical in-vitro neuronal recording system to evaluate microelectrode performance. Aqrawe Z; Patel N; Vyas Y; Bansal M; Montgomery J; Travas-Sejdic J; Svirskis D PLoS One; 2020; 15(8):e0237709. PubMed ID: 32817653 [TBL] [Abstract][Full Text] [Related]
54. Highly Stable Glassy Carbon Interfaces for Long-Term Neural Stimulation and Low-Noise Recording of Brain Activity. Vomero M; Castagnola E; Ciarpella F; Maggiolini E; Goshi N; Zucchini E; Carli S; Fadiga L; Kassegne S; Ricci D Sci Rep; 2017 Jan; 7():40332. PubMed ID: 28084398 [TBL] [Abstract][Full Text] [Related]
55. A system for MEA-based multisite stimulation. Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038 [TBL] [Abstract][Full Text] [Related]
56. Toward a comparison of microelectrodes for acute and chronic recordings. Ward MP; Rajdev P; Ellison C; Irazoqui PP Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899 [TBL] [Abstract][Full Text] [Related]
57. Combined macro-/mesoporous microelectrode arrays for low-noise extracellular recording of neural networks. Heim M; Rousseau L; Reculusa S; Urbanova V; Mazzocco C; Joucla S; Bouffier L; Vytras K; Bartlett P; Kuhn A; Yvert B J Neurophysiol; 2012 Sep; 108(6):1793-803. PubMed ID: 22745460 [TBL] [Abstract][Full Text] [Related]
58. SWCNTs/PEDOT:PSS nanocomposites-modified microelectrode arrays for revealing locking relations between burst and local field potential in cultured cortical networks. Liu Y; Xu S; Deng Y; Luo J; Zhang K; Yang Y; Sha L; Hu R; Xu Z; Yin E; Xu Q; Wu Y; Cai X Biosens Bioelectron; 2024 Jun; 253():116168. PubMed ID: 38452571 [TBL] [Abstract][Full Text] [Related]
59. An active, flexible carbon nanotube microelectrode array for recording electrocorticograms. Chen YC; Hsu HL; Lee YT; Su HC; Yen SJ; Chen CH; Hsu WL; Yew TR; Yeh SR; Yao DJ; Chang YC; Chen H J Neural Eng; 2011 Jun; 8(3):034001. PubMed ID: 21474876 [TBL] [Abstract][Full Text] [Related]
60. Electrostatic Interaction-Based High Tissue Adhesive, Stretchable Microelectrode Arrays for the Electrophysiological Interface. Tian G; Liu Y; Yu M; Liang C; Yang D; Huang J; Zhao Q; Zhang W; Chen J; Wang Y; Xu P; Liu Z; Qi D ACS Appl Mater Interfaces; 2022 Feb; 14(4):4852-4861. PubMed ID: 35051334 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]