These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38920265)

  • 1. Microrheology of active suspensions.
    Kanazawa T; Furukawa A
    Soft Matter; 2024 Jul; 20(28):5527-5537. PubMed ID: 38920265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmetric Mixtures of Pusher and Puller Microswimmers Behave as Noninteracting Suspensions.
    Bárdfalvy D; Anjum S; Nardini C; Morozov A; Stenhammar J
    Phys Rev Lett; 2020 Jul; 125(1):018003. PubMed ID: 32678625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sticky, active microrheology: Part 1. Linear-response.
    Huang DE; Zia RN
    J Colloid Interface Sci; 2019 Oct; 554():580-591. PubMed ID: 31326790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations.
    Gyrya V; Lipnikov K; Aranson IS; Berlyand L
    J Math Biol; 2011 May; 62(5):707-40. PubMed ID: 20563812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microrheology of colloidal systems.
    Puertas AM; Voigtmann T
    J Phys Condens Matter; 2014 Jun; 26(24):243101. PubMed ID: 24848328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle-scale statistical theory for hydrodynamically induced polar ordering in microswimmer suspensions.
    Hoell C; Löwen H; Menzel AM
    J Chem Phys; 2018 Oct; 149(14):144902. PubMed ID: 30316257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microrheology of colloidal suspensions via dynamic Monte Carlo simulations.
    García Daza FA; Puertas AM; Cuetos A; Patti A
    J Colloid Interface Sci; 2022 Jan; 605():182-192. PubMed ID: 34325340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.
    Furukawa A; Marenduzzo D; Cates ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022303. PubMed ID: 25215734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear microrheology of active Brownian suspensions.
    Burkholder EW; Brady JF
    Soft Matter; 2020 Jan; 16(4):1034-1046. PubMed ID: 31854425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active and nonlinear microrheology in dense colloidal suspensions.
    Gazuz I; Puertas AM; Voigtmann T; Fuchs M
    Phys Rev Lett; 2009 Jun; 102(24):248302. PubMed ID: 19659052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trapped-particle microrheology of active suspensions.
    Peng Z; Brady JF
    J Chem Phys; 2022 Sep; 157(10):104119. PubMed ID: 36109215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bulk rheology and microrheology of active fluids.
    Foffano G; Lintuvuori JS; Morozov AN; Stratford K; Cates ME; Marenduzzo D
    Eur Phys J E Soft Matter; 2012 Oct; 35(10):98. PubMed ID: 23053817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady hydrodynamic interaction between human swimmers.
    Yuan ZM; Li M; Ji CY; Li L; Jia L; Incecik A
    J R Soc Interface; 2019 Jan; 16(150):20180768. PubMed ID: 30958151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of drafting effects in swimming using computational fluid dynamics.
    Silva AJ; Rouboa A; Moreira A; Reis VM; Alves F; Vilas-Boas JP; Marinho DA
    J Sports Sci Med; 2008; 7(1):60-6. PubMed ID: 24150135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic interaction induced breakdown of the state properties of active fluids.
    Chen YF; Wang Z; Chu KC; Chen HY; Sheng YJ; Tsao HK
    Soft Matter; 2018 Jun; 14(25):5319-5326. PubMed ID: 29900446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensional rheology of active suspensions.
    Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056307. PubMed ID: 20866322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle-resolved lattice Boltzmann simulations of 3-dimensional active turbulence.
    Bárdfalvy D; Nordanger H; Nardini C; Morozov A; Stenhammar J
    Soft Matter; 2019 Oct; 15(39):7747-7756. PubMed ID: 31393504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic interaction between two swimmers at low Reynolds number.
    Pooley CM; Alexander GP; Yeomans JM
    Phys Rev Lett; 2007 Nov; 99(22):228103. PubMed ID: 18233332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Coupling of Puller and Pusher Active Microswimmers Influences Motility.
    Singh AV; Kishore V; Santomauro G; Yasa O; Bill J; Sitti M
    Langmuir; 2020 May; 36(19):5435-5443. PubMed ID: 32343587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear microrheology: bulk stresses versus direct interactions.
    Squires TM
    Langmuir; 2008 Feb; 24(4):1147-59. PubMed ID: 18154310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.