These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38920484)

  • 1. Photosensitive Control and Network Synchronization of Chemical Oscillators.
    Carballosa A; Gomez-Varela AI; Bao-Varela C; Flores-Arias MT; Muñuzuri AP
    Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel modes of synchronization in star networks of coupled chemical oscillators.
    Mersing D; Tyler SA; Ponboonjaroenchai B; Tinsley MR; Showalter K
    Chaos; 2021 Sep; 31(9):093127. PubMed ID: 34598462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomous cycling between excitatory and inhibitory coupling in photosensitive chemical oscillators.
    Yengi D; Tinsley MR; Showalter K
    Chaos; 2018 Apr; 28(4):045114. PubMed ID: 31906667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition between global feedback and diffusion in coupled Belousov-Zhabotinsky oscillators.
    Ohno K; Ogawa T; Suematsu NJ
    Phys Rev E; 2019 Jan; 99(1-1):012208. PubMed ID: 30780237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distance dependent types of coupling of chemical micro-oscillators immersed in a water-in-oil microemulsion.
    Mallphanov IL; Vanag VK
    Phys Chem Chem Phys; 2021 Apr; 23(15):9130-9138. PubMed ID: 33885122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization of Belousov-Zhabotinsky oscillators with electrochemical coupling in a spontaneous process.
    Liu Y; Pérez-Mercader J; Kiss IZ
    Chaos; 2022 Sep; 32(9):093128. PubMed ID: 36182363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical communication and dynamics of droplet emulsions in networks of Belousov-Zhabotinsky micro-oscillators produced by microfluidics.
    Torbensen K; Rossi F; Ristori S; Abou-Hassan A
    Lab Chip; 2017 Mar; 17(7):1179-1189. PubMed ID: 28239705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Investigation of the Dynamical Modes of Four Pulse-Coupled Chemical Micro-Oscillators.
    Proskurkin IS; Smelov PS; Vanag VK
    Chemphyschem; 2019 Sep; 20(17):2162-2165. PubMed ID: 31380597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periodic perturbation of chemical oscillators: entrainment and induced synchronization.
    Makki R; Muñuzuri AP; Perez-Mercader J
    Chemistry; 2014 Oct; 20(44):14213-7. PubMed ID: 25214439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulse-coupled BZ oscillators with unequal coupling strengths.
    Horvath V; Kutner DJ; Chavis JT; Epstein IR
    Phys Chem Chem Phys; 2015 Feb; 17(6):4664-76. PubMed ID: 25587932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators.
    Horváth V; Kutner DJ; Zeng MD; Epstein IR
    Chaos; 2019 Feb; 29(2):023128. PubMed ID: 30823715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling chemical oscillations in heterogeneous Belousov-Zhabotinsky gels via mechanical strain.
    Yashin VV; Van Vliet KJ; Balazs AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046214. PubMed ID: 19518319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of a 1D array of inhibitory coupled chemical oscillators in microdroplets with global negative feedback.
    Proskurkin IS; Vanag VK
    Phys Chem Chem Phys; 2018 Jun; 20(23):16126-16137. PubMed ID: 29855029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase wave between two oscillators in the photosensitive Belousov-Zhabotinsky reaction depending on the difference in the illumination time.
    Nakata S; Kashima K; Kitahata H; Mori Y
    J Phys Chem A; 2010 Sep; 114(34):9124-9. PubMed ID: 20695485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined excitatory and inhibitory coupling in a 1-D array of Belousov-Zhabotinsky droplets.
    Li N; Delgado J; González-Ochoa HO; Epstein IR; Fraden S
    Phys Chem Chem Phys; 2014 Jun; 16(22):10965-78. PubMed ID: 24770658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing self-powered materials systems that perform pattern recognition.
    Fang Y; Yashin VV; Levitan SP; Balazs AC
    Chem Commun (Camb); 2017 Jul; 53(55):7692-7706. PubMed ID: 28630968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors.
    Fang Y; Yashin VV; Dickerson SJ; Balazs AC
    Chaos; 2018 May; 28(5):053106. PubMed ID: 29857671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of New Belousov-Zhabotinsky Micro-Oscillators on the Basis of Silica Gel Beads.
    Mallphanov IL; Vanag VK
    J Phys Chem A; 2020 Jan; 124(2):272-282. PubMed ID: 31899640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple model for synchronization of two Belousov-Zhabotinsky gels interacting mechanically.
    Sukegawa T; Yamada Y; Maeda S
    J Chem Phys; 2024 Mar; 160(10):. PubMed ID: 38465685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Traveling waves propagating through coupled microbeads in the Belousov-Zhabotinsky reaction.
    Kuze M; Kitahata H; Nakata S
    Phys Chem Chem Phys; 2021 Nov; 23(42):24175-24179. PubMed ID: 34673865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.