These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 38920531)
1. Unambiguous Models and Machine Learning Strategies for Anomalous Extreme Events in Turbulent Dynamical System. Qi D Entropy (Basel); 2024 Jun; 26(6):. PubMed ID: 38920531 [TBL] [Abstract][Full Text] [Related]
2. Using machine learning to predict extreme events in complex systems. Qi D; Majda AJ Proc Natl Acad Sci U S A; 2020 Jan; 117(1):52-59. PubMed ID: 31871152 [TBL] [Abstract][Full Text] [Related]
3. Machine learning-based statistical closure models for turbulent dynamical systems. Qi D; Harlim J Philos Trans A Math Phys Eng Sci; 2022 Aug; 380(2229):20210205. PubMed ID: 35719064 [TBL] [Abstract][Full Text] [Related]
4. A random batch method for efficient ensemble forecasts of multiscale turbulent systems. Qi D; Liu JG Chaos; 2023 Feb; 33(2):023113. PubMed ID: 36859236 [TBL] [Abstract][Full Text] [Related]
5. Linear and nonlinear statistical response theories with prototype applications to sensitivity analysis and statistical control of complex turbulent dynamical systems. Majda AJ; Qi D Chaos; 2019 Oct; 29(10):103131. PubMed ID: 31675803 [TBL] [Abstract][Full Text] [Related]
6. Extreme learning machine for reduced order modeling of turbulent geophysical flows. San O; Maulik R Phys Rev E; 2018 Apr; 97(4-1):042322. PubMed ID: 29758628 [TBL] [Abstract][Full Text] [Related]
7. Model Error, Information Barriers, State Estimation and Prediction in Complex Multiscale Systems. Majda AJ; Chen N Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265733 [TBL] [Abstract][Full Text] [Related]
8. Data-assisted reduced-order modeling of extreme events in complex dynamical systems. Wan ZY; Vlachas P; Koumoutsakos P; Sapsis T PLoS One; 2018; 13(5):e0197704. PubMed ID: 29795631 [TBL] [Abstract][Full Text] [Related]
9. Model-assisted deep learning of rare extreme events from partial observations. Asch A; J Brady E; Gallardo H; Hood J; Chu B; Farazmand M Chaos; 2022 Apr; 32(4):043112. PubMed ID: 35489849 [TBL] [Abstract][Full Text] [Related]
10. Predicting observed and hidden extreme events in complex nonlinear dynamical systems with partial observations and short training time series. Chen N; Majda AJ Chaos; 2020 Mar; 30(3):033101. PubMed ID: 32237755 [TBL] [Abstract][Full Text] [Related]
11. High-order moment closure models with random batch method for efficient computation of multiscale turbulent systems. Qi D; Liu JG Chaos; 2023 Oct; 33(10):. PubMed ID: 37871000 [TBL] [Abstract][Full Text] [Related]
12. Inferring turbulent environments via machine learning. Buzzicotti M; Bonaccorso F Eur Phys J E Soft Matter; 2022 Dec; 45(12):102. PubMed ID: 36586035 [TBL] [Abstract][Full Text] [Related]
13. Can Short and Partial Observations Reduce Model Error and Facilitate Machine Learning Prediction? Chen N Entropy (Basel); 2020 Sep; 22(10):. PubMed ID: 33286844 [TBL] [Abstract][Full Text] [Related]
14. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Ă…rsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
15. Training a neural network to predict dynamics it has never seen. Pershin A; Beaume C; Li K; Tobias SM Phys Rev E; 2023 Jan; 107(1-1):014304. PubMed ID: 36797895 [TBL] [Abstract][Full Text] [Related]
16. Modeling and inference methods for switching regime-dependent dynamical systems with multiscale neural observations. Song CY; Hsieh HL; Pesaran B; Shanechi MM J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36261030 [No Abstract] [Full Text] [Related]
17. Conditional Gaussian Systems for Multiscale Nonlinear Stochastic Systems: Prediction, State Estimation and Uncertainty Quantification. Chen N; Majda AJ Entropy (Basel); 2018 Jul; 20(7):. PubMed ID: 33265599 [TBL] [Abstract][Full Text] [Related]
18. A variational approach to probing extreme events in turbulent dynamical systems. Farazmand M; Sapsis TP Sci Adv; 2017 Sep; 3(9):e1701533. PubMed ID: 28948226 [TBL] [Abstract][Full Text] [Related]
19. Statistical dynamical model to predict extreme events and anomalous features in shallow water waves with abrupt depth change. Majda AJ; Moore MNJ; Qi D Proc Natl Acad Sci U S A; 2019 Mar; 116(10):3982-3987. PubMed ID: 30760588 [TBL] [Abstract][Full Text] [Related]
20. Conceptual dynamical models for turbulence. Majda AJ; Lee Y Proc Natl Acad Sci U S A; 2014 May; 111(18):6548-53. PubMed ID: 24753605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]