These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 38920572)
1. Development of a Multiplexed Electrochemical Aptasensor for the Detection of Cyanotoxins. Rhouati A; Zourob M Biosensors (Basel); 2024 May; 14(6):. PubMed ID: 38920572 [TBL] [Abstract][Full Text] [Related]
2. Aptamer-Based Fluorescent Sensor Array for Multiplexed Detection of Cyanotoxins on a Smartphone. Li Z; Zhang S; Yu T; Dai Z; Wei Q Anal Chem; 2019 Aug; 91(16):10448-10457. PubMed ID: 31192585 [TBL] [Abstract][Full Text] [Related]
3. Multi-detection method for five common microalgal toxins based on the use of microspheres coupled to a flow-cytometry system. Fraga M; Vilariño N; Louzao MC; Rodríguez LP; Alfonso A; Campbell K; Elliott CT; Taylor P; Ramos V; Vasconcelos V; Botana LM Anal Chim Acta; 2014 Nov; 850():57-64. PubMed ID: 25441160 [TBL] [Abstract][Full Text] [Related]
4. Risk quick sketch: Soil captured most anatoxin-a and microcystin-RR rather than cylindrospermopsin and microcystin-LA/-LY. Zhang Y; Duy SV; Whalen JK; Munoz G; Sauvé S Sci Total Environ; 2024 Nov; 951():175418. PubMed ID: 39127195 [TBL] [Abstract][Full Text] [Related]
5. Detection of various freshwater cyanobacterial toxins using ultra-performance liquid chromatography tandem mass spectrometry. Oehrle SA; Southwell B; Westrick J Toxicon; 2010 May; 55(5):965-72. PubMed ID: 19878689 [TBL] [Abstract][Full Text] [Related]
6. Determination of microcystins, nodularin, anatoxin-a, cylindrospermopsin, and saxitoxin in water and fish tissue using isotope dilution liquid chromatography tandem mass spectrometry. Haddad SP; Bobbitt JM; Taylor RB; Lovin LM; Conkle JL; Chambliss CK; Brooks BW J Chromatogr A; 2019 Aug; 1599():66-74. PubMed ID: 30961962 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical Biosensors for Tracing Cyanotoxins in Food and Environmental Matrices. Miglione A; Napoletano M; Cinti S Biosensors (Basel); 2021 Sep; 11(9):. PubMed ID: 34562905 [TBL] [Abstract][Full Text] [Related]
8. In vitro selection, characterization, and biosensing application of high-affinity cylindrospermopsin-targeting aptamers. Elshafey R; Siaj M; Zourob M Anal Chem; 2014 Sep; 86(18):9196-203. PubMed ID: 25122072 [TBL] [Abstract][Full Text] [Related]
9. A highly sensitive electrochemical aptasensor for detection of microcystin-LR based on a dual signal amplification strategy. Liu X; Tang Y; Liu P; Yang L; Li L; Zhang Q; Zhou Y; Khan MZH Analyst; 2019 Feb; 144(5):1671-1678. PubMed ID: 30652696 [TBL] [Abstract][Full Text] [Related]
10. Fabricating photoelectrochemical aptasensor for selectively monitoring microcystin-LR residues in fish based on visible light-responsive BiOBr nanoflakes/N-doped graphene photoelectrode. Du X; Jiang D; Dai L; Zhou L; Hao N; Qian J; Qiu B; Wang K Biosens Bioelectron; 2016 Jul; 81():242-248. PubMed ID: 26963789 [TBL] [Abstract][Full Text] [Related]
11. Label-free voltammetric aptasensor for the sensitive detection of microcystin-LR using graphene-modified electrodes. Eissa S; Ng A; Siaj M; Zourob M Anal Chem; 2014 Aug; 86(15):7551-7. PubMed ID: 25011536 [TBL] [Abstract][Full Text] [Related]
12. DNA aptamers selection and characterization for development of label-free impedimetric aptasensor for neurotoxin anatoxin-a. Elshafey R; Siaj M; Zourob M Biosens Bioelectron; 2015 Jun; 68():295-302. PubMed ID: 25594161 [TBL] [Abstract][Full Text] [Related]
13. Ultrasensitive label-free electrochemical biosensor for detecting linear microcystin-LR using degrading enzyme MlrB as recognition element. Li Y; Si S; Huang F; Wei J; Dong S; Yang F; Li H; Liu S Bioelectrochemistry; 2022 Apr; 144():108000. PubMed ID: 34906815 [TBL] [Abstract][Full Text] [Related]
14. Detection of freshwater cyanotoxins and measurement of masked microcystins in tilapia from Southeast Asian aquaculture farms. Greer B; Maul R; Campbell K; Elliott CT Anal Bioanal Chem; 2017 Jun; 409(16):4057-4069. PubMed ID: 28429062 [TBL] [Abstract][Full Text] [Related]
15. Detected cyanotoxins by UHPLC MS/MS technique in tropical reservoirs of northeastern Colombia. León C; Peñuela GA Toxicon; 2019 Sep; 167():38-48. PubMed ID: 31185239 [TBL] [Abstract][Full Text] [Related]
17. Algal Blooms and Cyanotoxins in Jordan Lake, North Carolina. Wiltsie D; Schnetzer A; Green J; Vander Borgh M; Fensin E Toxins (Basel); 2018 Feb; 10(2):. PubMed ID: 29495289 [TBL] [Abstract][Full Text] [Related]
18. Toxins of cyanobacteria. van Apeldoorn ME; van Egmond HP; Speijers GJ; Bakker GJ Mol Nutr Food Res; 2007 Jan; 51(1):7-60. PubMed ID: 17195276 [TBL] [Abstract][Full Text] [Related]
19. A novel SERS-based aptasensor for ultrasensitive sensing of microcystin-LR. He D; Wu Z; Cui B; Jin Z Food Chem; 2019 Apr; 278():197-202. PubMed ID: 30583362 [TBL] [Abstract][Full Text] [Related]
20. Degradation of widespread cyanotoxins with high impact in drinking water (microcystins, cylindrospermopsin, anatoxin-a and saxitoxin) by CWPO. Munoz M; Nieto-Sandoval J; Cirés S; de Pedro ZM; Quesada A; Casas JA Water Res; 2019 Oct; 163():114853. PubMed ID: 31310856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]