These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 38920674)

  • 21. Chemokines in mesenchymal stem cell therapy for bone repair: a novel concept of recruiting mesenchymal stem cells and the possible cell sources.
    Ito H
    Mod Rheumatol; 2011 Apr; 21(2):113-21. PubMed ID: 20830500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New insights on the reparative cells in bone regeneration and repair.
    Huang S; Jin M; Su N; Chen L
    Biol Rev Camb Philos Soc; 2021 Apr; 96(2):357-375. PubMed ID: 33051970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Osteogenic protein-1 for long bone nonunion: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2005; 5(6):1-57. PubMed ID: 23074475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clinical advances in bone regeneration.
    Siddiqui NA; Owen JM
    Curr Stem Cell Res Ther; 2013 May; 8(3):192-200. PubMed ID: 23317467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing.
    Lacroix D; Prendergast PJ; Li G; Marsh D
    Med Biol Eng Comput; 2002 Jan; 40(1):14-21. PubMed ID: 11954702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wnt-associated adult stem cell marker Lgr6 is required for osteogenesis and fracture healing.
    Doherty L; Wan M; Peterson A; Youngstrom DW; King JS; Kalajzic I; Hankenson KD; Sanjay A
    Bone; 2023 Apr; 169():116681. PubMed ID: 36708855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MiR-140-5p promotes osteogenic differentiation of mouse embryonic bone marrow mesenchymal stem cells and post-fracture healing of mice.
    Jiao J; Feng G; Wu M; Wang Y; Li R; Liu J
    Cell Biochem Funct; 2020 Dec; 38(8):1152-1160. PubMed ID: 33047358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regenerative effects of transplanted mesenchymal stem cells in fracture healing.
    Granero-Moltó F; Weis JA; Miga MI; Landis B; Myers TJ; O'Rear L; Longobardi L; Jansen ED; Mortlock DP; Spagnoli A
    Stem Cells; 2009 Aug; 27(8):1887-98. PubMed ID: 19544445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Periosteum Containing Implicit Stem Cells: A Progressive Source of Inspiration for Bone Tissue Regeneration.
    Zhang X; Deng C; Qi S
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential mechanisms of a periosteum patch as an effective and favourable approach to enhance tendon-bone healing in the human body.
    Li H; Jiang J; Wu Y; Chen S
    Int Orthop; 2012 Mar; 36(3):665-9. PubMed ID: 22009448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human adipose derived stem cells reduce callus volume upon BMP-2 administration in bone regeneration.
    Keibl C; Fügl A; Zanoni G; Tangl S; Wolbank S; Redl H; van Griensven M
    Injury; 2011 Aug; 42(8):814-20. PubMed ID: 21457972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of mesenchymal stem cells in bone regeneration and fracture repair: a review.
    Wang X; Wang Y; Gou W; Lu Q; Peng J; Lu S
    Int Orthop; 2013 Dec; 37(12):2491-8. PubMed ID: 23948983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stem cell-derived exosomes: A promising strategy for fracture healing.
    Hao ZC; Lu J; Wang SZ; Wu H; Zhang YT; Xu SG
    Cell Prolif; 2017 Oct; 50(5):. PubMed ID: 28741758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Innovation in basic science: stem cells and their role in the treatment of paediatric cardiac failure--opportunities and challenges.
    Kaushal S; Jacobs JP; Gossett JG; Steele A; Steele P; Davis CR; Pahl E; Vijayan K; Asante-Korang A; Boucek RJ; Backer CL; Wold LE
    Cardiol Young; 2009 Nov; 19 Suppl 2():74-84. PubMed ID: 19857353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular therapies for the treatment of non-union: the past, present and future.
    Homma Y; Zimmermann G; Hernigou P
    Injury; 2013 Jan; 44 Suppl 1():S46-9. PubMed ID: 23351871
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fracture healing: mechanisms and interventions.
    Einhorn TA; Gerstenfeld LC
    Nat Rev Rheumatol; 2015 Jan; 11(1):45-54. PubMed ID: 25266456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regenerative surgery in cranioplasty revisited: the role of adipose-derived stem cells and BMP-2.
    Smith DM; Cooper GM; Afifi AM; Mooney MP; Cray J; Rubin JP; Marra KG; Losee JE
    Plast Reconstr Surg; 2011 Nov; 128(5):1053-1060. PubMed ID: 22030488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Therapeutic Potential of Hematopoietic Stem Cells in Bone Regeneration.
    Oliveira CS; Carreira M; Correia CR; Mano JF
    Tissue Eng Part B Rev; 2022 Apr; 28(2):379-392. PubMed ID: 33683146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration.
    Colnot C
    J Bone Miner Res; 2009 Feb; 24(2):274-82. PubMed ID: 18847330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonunions and the potential of stem cells in fracture-healing.
    Tseng SS; Lee MA; Reddi AH
    J Bone Joint Surg Am; 2008 Feb; 90 Suppl 1():92-8. PubMed ID: 18292363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.