These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38921208)

  • 1. Bioinspired Control Architecture for Adaptive and Resilient Navigation of Unmanned Underwater Vehicle in Monitoring Missions of Submerged Aquatic Vegetation Meadows.
    García-Córdova F; Guerrero-González A; Hidalgo-Castelo F
    Biomimetics (Basel); 2024 May; 9(6):. PubMed ID: 38921208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive model-parameter-free fault-tolerant trajectory tracking control for autonomous underwater vehicles.
    Zhu C; Huang B; Zhou B; Su Y; Zhang E
    ISA Trans; 2021 Aug; 114():57-71. PubMed ID: 33446340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polar Grid Navigation Algorithm for Unmanned Underwater Vehicles.
    Yan Z; Wang L; Zhang W; Zhou J; Wang M
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28698498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Sensor Fault Diagnosis of Underwater Thruster Propeller Based on Deep Learning.
    Tsai CM; Wang CS; Chung YJ; Sun YD; Perng JW
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on Control System of Integrated Unmanned Surface Vehicle and Underwater Vehicle.
    Cho HJ; Jeong SK; Ji DH; Tran NH; Vu MT; Choi HS
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32380718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polar Cooperative Navigation Algorithm for Multi-Unmanned Underwater Vehicles Considering Communication Delays.
    Yan Z; Wang L; Wang T; Yang Z; Chen T; Xu J
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29601537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Path Following, Obstacle Detection and Obstacle Avoidance for Thrusted Underwater Snake Robots.
    Kelasidi E; Moe S; Pettersen KY; Kohl AM; Liljebäck P; Gravdahl JT
    Front Robot AI; 2019; 6():57. PubMed ID: 33501072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-Time Controller for Coordinated Navigation of Unmanned Underwater Vehicles in a Collaborative Manipulation Task.
    González-García J; Narcizo-Nuci NA; Gómez-Espinosa A; García-Valdovinos LG; Salgado-Jiménez T
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic surface fault tolerant control for underwater remotely operated vehicles.
    Baldini A; Ciabattoni L; Felicetti R; Ferracuti F; Freddi A; Monteriù A
    ISA Trans; 2018 Jul; 78():10-20. PubMed ID: 29503009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positioning of Unmanned Underwater Vehicle Based on Autonomous Tracking Buoy.
    Li Y; Ruan R; Zhou Z; Sun A; Luo X
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Diver Communication System by Combining Optical and Electromagnetic Trackers.
    Kataria A; Ghosh S; Karar V; Gupta T; Srinivasan K; Hu YC
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32906739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on Dynamic Behavior of Unmanned Surface Vehicle-Linked Unmanned Underwater Vehicle System for Underwater Exploration.
    Vu MT; Van M; Bui DHP; Do QT; Huynh TT; Lee SD; Choi HS
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Underwater Docking Approach and Homing to Enable Persistent Operation.
    Page BR; Lambert R; Chavez-Galaviz J; Mahmoudian N
    Front Robot AI; 2021; 8():621755. PubMed ID: 33791340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localisation of Unmanned Underwater Vehicles (UUVs) in Complex and Confined Environments: A Review.
    Watson S; Duecker DA; Groves K
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33143242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction Algorithm for the Navigation System of an Autonomous Unmanned Underwater Vehicle.
    Chen D; Neusypin KA; Selezneva MS
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32326276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Dynamically Reconfigurable Autonomous Underwater Robot for Karst Exploration: Design and Experiment.
    Dang T; Lapierre L; Zapata R; Ropars B; Gourmelen G
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous Deployment of Underwater Acoustic Monitoring Devices Using an Unmanned Aerial Vehicle: The Flying Hydrophone.
    Babatunde D; Pomeroy S; Lepper P; Clark B; Walker R
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Survey on Unmanned Underwater Vehicles: Challenges, Enabling Technologies, and Future Research Directions.
    Wibisono A; Piran MJ; Song HK; Lee BM
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survey on the Developments of Unmanned Marine Vehicles: Intelligence and Cooperation.
    Bae I; Hong J
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Polar Initial Alignment Algorithm for Unmanned Underwater Vehicles.
    Yan Z; Wang L; Wang T; Zhang H; Zhang X; Liu X
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.