These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38921226)

  • 1. Biped Robots Control in Gusty Environments with Adaptive Exploration Based DDPG.
    Zhang Y; Sun H; Sun H; Huang Y; Hashimoto K
    Biomimetics (Basel); 2024 Jun; 9(6):. PubMed ID: 38921226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A parallel heterogeneous policy deep reinforcement learning algorithm for bipedal walking motion design.
    Li C; Li M; Tao C
    Front Neurorobot; 2023; 17():1205775. PubMed ID: 37614967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multi-Agent Reinforcement Learning Method for Omnidirectional Walking of Bipedal Robots.
    Mou H; Xue J; Liu J; Feng Z; Li Q; Zhang J
    Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Deterministic Policy Gradient-Based Autonomous Driving for Mobile Robots in Sparse Reward Environments.
    Park M; Lee SY; Hong JS; Kwon NK
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asynchronous Episodic Deep Deterministic Policy Gradient: Toward Continuous Control in Computationally Complex Environments.
    Zhang Z; Chen J; Chen Z; Li W
    IEEE Trans Cybern; 2021 Feb; 51(2):604-613. PubMed ID: 31902788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SLP-Improved DDPG Path-Planning Algorithm for Mobile Robot in Large-Scale Dynamic Environment.
    Chen Y; Liang L
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SafeCrowdNav: safety evaluation of robot crowd navigation in complex scenes.
    Xu J; Zhang W; Cai J; Liu H
    Front Neurorobot; 2023; 17():1276519. PubMed ID: 37904892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Hierarchical Framework for Quadruped Robots Gait Planning Based on DDPG.
    Li Y; Chen Z; Wu C; Mao H; Sun P
    Biomimetics (Basel); 2023 Aug; 8(5):. PubMed ID: 37754133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control.
    Liu C; Gao J; Bi Y; Shi X; Tian D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AHEGC: Adaptive Hindsight Experience Replay With Goal-Amended Curiosity Module for Robot Control.
    Zeng H; Zhang P; Li F; Lin C; Zhou J
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; PP():. PubMed ID: 37527323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autonomous Driving of Mobile Robots in Dynamic Environments Based on Deep Deterministic Policy Gradient: Reward Shaping and Hindsight Experience Replay.
    Park M; Park C; Kwon NK
    Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. End-to-End Autonomous Navigation Based on Deep Reinforcement Learning with a Survival Penalty Function.
    Jeng SL; Chiang C
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion planning framework based on dual-agent DDPG method for dual-arm robots guided by human joint angle constraints.
    Liang K; Zha F; Guo W; Liu S; Wang P; Sun L
    Front Neurorobot; 2024; 18():1362359. PubMed ID: 38455735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Improved Prioritized DDPG Based on Fractional-Order Learning Scheme.
    Fan QY; Cai M; Xu B
    IEEE Trans Neural Netw Learn Syst; 2024 May; PP():. PubMed ID: 38717886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuzzy-based collective pitch control for wind turbine via deep reinforcement learning.
    Nabeel A; Lasheen A; Elshafei AL; Aboul Zahab E
    ISA Trans; 2024 May; 148():307-325. PubMed ID: 38599929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Path Planning for Mobile Robot Based on Deep Deterministic Policy Gradient.
    Gong H; Wang P; Ni C; Cheng N
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of Deep Deterministic Policy Gradients for Controlling Dynamic Bipedal Walking.
    Liu C; Lonsberry AG; Nandor MJ; Audu ML; Lonsberry AJ; Quinn RD
    Biomimetics (Basel); 2019 Mar; 4(1):. PubMed ID: 31105213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating exploration for deep reinforcement learning of concentric tube robot control.
    Iyengar K; Dwyer G; Stoyanov D
    Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1157-1165. PubMed ID: 32506349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LORM: a novel reinforcement learning framework for biped gait control.
    Zhang W; Jiang Y; Farrukh FUD; Zhang C; Zhang D; Wang G
    PeerJ Comput Sci; 2022; 8():e927. PubMed ID: 35494792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.