BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38921250)

  • 1. Design and Control of a Tendon-Driven Robotic Finger Based on Grasping Task Analysis.
    Zhou X; Fu H; Shentu B; Wang W; Cai S; Bao G
    Biomimetics (Basel); 2024 Jun; 9(6):. PubMed ID: 38921250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Anthropomorphic Finger Design With a Novel Friction Clutch for Achieving Human-Like Reach-and-Grasp Movements.
    Yong X; Zhu S; Sun Z; Chen S; Togo S; Yokoi H; Jing X; Li G
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4942-4953. PubMed ID: 38060359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grasping Ability and Motion Synergies in Affordable Tendon-Driven Prosthetic Hands Controlled by Able-Bodied Subjects.
    Llop-Harillo I; Pérez-González A; Andrés-Esperanza J
    Front Neurorobot; 2020; 14():57. PubMed ID: 32982713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired Soft Robotic Fingers with Sequential Motion Based on Tendon-Driven Mechanisms.
    Zhang Y; Zhang W; Yang J; Pu W
    Soft Robot; 2022 Jun; 9(3):531-541. PubMed ID: 34115957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A four-tendon robotic finger with tendon transmission inspired by the human extensor mechanism.
    Joshua A S; Rake NJ
    Bioinspir Biomim; 2021 May; 16(4):. PubMed ID: 33137793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimode Grasping Soft Gripper Achieved by Layer Jamming Structure and Tendon-Driven Mechanism.
    Fang B; Sun F; Wu L; Liu F; Wang X; Huang H; Huang W; Liu H; Wen L
    Soft Robot; 2022 Apr; 9(2):233-249. PubMed ID: 34107748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RBF network-based adaptive sliding mode control strategy for the tendon-sheath driven joint of a prosthetic hand.
    Yin M; Huang B; Yi Z; Cai S
    Technol Health Care; 2022; 30(5):1155-1165. PubMed ID: 35342063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards humanlike grasp in robotic hands: mechanical implementation of force synergies.
    Teng Z; Xu G; Pei J; Li B; Zhang S; Li D
    Bioinspir Biomim; 2024 Apr; 19(3):. PubMed ID: 38579732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the frictional interaction in the tendon-pulley system of the human finger for use in robotics.
    Dermitzakis K; Morales MR; Schweizer A
    Artif Life; 2013; 19(1):149-69. PubMed ID: 23186347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Grasp Mechanism Understanding, Human-Inspired Grasp Control and Robotic Grasping Planning for Agricultural Robots.
    Zheng W; Guo N; Zhang B; Zhou J; Tian G; Xiong Y
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human-Like Endtip Stiffness Modulation Inspires Dexterous Manipulation With Robotic Hands.
    Shafer A; Deshpande AD
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1138-1146. PubMed ID: 35420986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a Multi-Mode Mechanical Finger Based on Linkage and Tendon Fusion Transmission.
    Zhang Y; Zhao Q; Deng H; Xu X
    Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical Analysis of the Effect of the Finger Extensor Mechanism on Hand Grasping Performance.
    Wei Y; Zou Z; Qian Z; Ren L; Wei G
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():360-368. PubMed ID: 35085085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic finger extension mechanism for soft wearable hand rehabilitation devices.
    Kim DH; Heo SH; Park HS
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1326-1330. PubMed ID: 28814004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft Conductive Hydrogel-Based Electronic Skin for Robot Finger Grasping Manipulation.
    Cheng X; Zhang F; Dong W
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft Robotic Finger with Energy-Coupled Quadrastability.
    Sun Z; Jiang T; Wang Z; Jiang P; Yang Y; Li H; Ma T; Luo J
    Soft Robot; 2024 Feb; 11(1):140-156. PubMed ID: 37646782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Evaluation of an Adaptive Multi-DOF Finger with Mechanical-Sensor Integrated for Prosthetic Hand.
    Wu C; Song T; Wu Z; Cao Q; Fei F; Yang D; Xu B; Song A
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33396765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and assessment of a hand assist device: GRIPIT.
    Kim B; In H; Lee DY; Cho KJ
    J Neuroeng Rehabil; 2017 Feb; 14(1):15. PubMed ID: 28222759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Low-Pressure Robotic Glove Based on CT-Optimized Finger Joint Kinematic Model for Long-Term Rehabilitation of Stroke Patients.
    Yu J; Luo L; Zhu W; Li Y; Xie P; Zhang L
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():53-62. PubMed ID: 38032787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Model-Based Biomimetic Control of Prosthetic Finger Force for Grasp.
    Luo Q; Niu CM; Liu J; Chou CH; Hao M; Lan N
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1723-1733. PubMed ID: 34415835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.