BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38921422)

  • 21. Efficacy of pterostilbene suppression on Aspergillus flavus growth, aflatoxin B
    Hu YM; Wang YR; Zhao WB; Ding YY; Wu ZR; Wang GH; Deng P; Zhang SY; An JX; Zhang ZJ; Luo XF; Liu YQ
    Int J Food Microbiol; 2023 Nov; 404():110318. PubMed ID: 37454507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonaflatoxigenic Aspergillus flavus TX9-8 competitively prevents aflatoxin accumulation by A. flavus isolates of large and small sclerotial morphotypes.
    Chang PK; Hua SS
    Int J Food Microbiol; 2007 Mar; 114(3):275-9. PubMed ID: 17140692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. rtfA, a putative RNA-Pol II transcription elongation factor gene, is necessary for normal morphological and chemical development in Aspergillus flavus.
    Lohmar JM; Harris-Coward PY; Cary JW; Dhingra S; Calvo AM
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):5029-41. PubMed ID: 27020290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The
    Yang G; Hu Y; Fasoyin OE; Yue Y; Chen L; Qiu Y; Wang X; Zhuang Z; Wang S
    Front Cell Infect Microbiol; 2018; 8():141. PubMed ID: 29868497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of oxidative stress in Sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus.
    Grintzalis K; Vernardis SI; Klapa MI; Georgiou CD
    Appl Environ Microbiol; 2014 Sep; 80(18):5561-71. PubMed ID: 25002424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The bZIP Transcription Factor AflRsmA Regulates Aflatoxin B
    Wang X; Zha W; Liang L; Fasoyin OE; Wu L; Wang S
    Toxins (Basel); 2020 Apr; 12(4):. PubMed ID: 32340099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the genetics of regulation of aflatoxin production and Aspergillus flavus development.
    Bhatnagar D; Cary JW; Ehrlich K; Yu J; Cleveland TE
    Mycopathologia; 2006 Sep; 162(3):155-66. PubMed ID: 16944283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The regulatory role of the Aspergillus flavus core retromer complex in aflatoxin metabolism.
    Wang S; Wang Y; Liu Y; Liu L; Li J; Yang K; Liu M; Zeng W; Qin L; Lin R; Nie X; Jiang L; Wang S
    J Biol Chem; 2022 Jul; 298(7):102120. PubMed ID: 35697069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aspergillus flavus pangenome (AflaPan) uncovers novel aflatoxin and secondary metabolite associated gene clusters.
    Gangurde SS; Korani W; Bajaj P; Wang H; Fountain JC; Agarwal G; Pandey MK; Abbas HK; Chang PK; Holbrook CC; Kemerait RC; Varshney RK; Dutta B; Clevenger JP; Guo B
    BMC Plant Biol; 2024 May; 24(1):354. PubMed ID: 38693487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of aflatoxin production of Aspergillus flavus at different temperatures and media: Proteome analysis based on TMT.
    Wang P; Chang PK; Kong Q; Shan S; Wei Q
    Int J Food Microbiol; 2019 Nov; 310():108313. PubMed ID: 31476580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential regulation of mycelial growth and aflatoxin biosynthesis by Aspergillus flavus under different temperatures as revealed by strand-specific RNA-Seq.
    Han G; Zhao K; Yan X; Xiang F; Li X; Tao F
    Microbiologyopen; 2019 Oct; 8(10):e897. PubMed ID: 31328901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comprehensive analysis of aflatoxin B
    Liang L; Wang X; Lan H; Wei S; Lei Y; Zhang S; Zhai H; Hu Y; Lv Y
    J Hazard Mater; 2024 Jan; 461():132677. PubMed ID: 37797576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The bZIP transcription factor Afap1 mediates the oxidative stress response and aflatoxin biosynthesis in Aspergillus flavus.
    Guan X; Zhao Y; Liu X; Shang B; Xing F; Zhou L; Wang Y; Zhang C; Bhatnagar D; Liu Y
    Rev Argent Microbiol; 2019; 51(4):292-301. PubMed ID: 30905507
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep sequencing analysis of transcriptomes in Aspergillus flavus in response to resveratrol.
    Wang H; Lei Y; Yan L; Cheng K; Dai X; Wan L; Guo W; Cheng L; Liao B
    BMC Microbiol; 2015 Sep; 15():182. PubMed ID: 26420172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the velvet regulators in Aspergillus flavus.
    Eom TJ; Moon H; Yu JH; Park HS
    J Microbiol; 2018 Dec; 56(12):893-901. PubMed ID: 30361976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA sequencing of an nsdC mutant reveals global regulation of secondary metabolic gene clusters in Aspergillus flavus.
    Gilbert MK; Mack BM; Wei Q; Bland JM; Bhatnagar D; Cary JW
    Microbiol Res; 2016 Jan; 182():150-61. PubMed ID: 26686623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ssu72 Regulates Fungal Development, Aflatoxin Biosynthesis and Pathogenicity in
    Yang G; Cao X; Qin L; Yan L; Hong R; Yuan J; Wang S
    Toxins (Basel); 2020 Nov; 12(11):. PubMed ID: 33202955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulator of G Protein Signaling Contributes to the Development and Aflatoxin Biosynthesis in Aspergillus flavus through the Regulation of Gα Activity.
    Xie R; Yang K; Tumukunde E; Guo Z; Zhang B; Liu Y; Zhuang Z; Yuan J; Wang S
    Appl Environ Microbiol; 2022 Jun; 88(12):e0024422. PubMed ID: 35638847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lysine 2-hydroxyisobutyrylation orchestrates cell development and aflatoxin biosynthesis in Aspergillus flavus.
    Lv Y; Wang J; Yang H; Li N; Farzaneh M; Wei S; Zhai H; Zhang S; Hu Y
    Environ Microbiol; 2022 Sep; 24(9):4356-4368. PubMed ID: 35621059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The
    Majumdar R; Lebar M; Mack B; Minocha R; Minocha S; Carter-Wientjes C; Sickler C; Rajasekaran K; Cary JW
    Front Plant Sci; 2018; 9():317. PubMed ID: 29616053
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.