These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 38921746)
1. Functional Analysis of Type III Effectors in Huang J; Zhou H; Zhou M; Li N; Jiang B; He Y Pathogens; 2024 May; 13(6):. PubMed ID: 38921746 [No Abstract] [Full Text] [Related]
2. The Type III Effector XopL Huang J; Dong Y; Li N; He Y; Zhou H Int J Mol Sci; 2024 Aug; 25(17):. PubMed ID: 39273124 [No Abstract] [Full Text] [Related]
3. A type III effector XopL Yan X; Tao J; Luo HL; Tan LT; Rong W; Li HP; He CZ Res Microbiol; 2019; 170(3):138-146. PubMed ID: 30594633 [TBL] [Abstract][Full Text] [Related]
4. The type III effector AvrXccB in Xanthomonas campestris pv. campestris targets putative methyltransferases and suppresses innate immunity in Arabidopsis. Liu L; Wang Y; Cui F; Fang A; Wang S; Wang J; Wei C; Li S; Sun W Mol Plant Pathol; 2017 Aug; 18(6):768-782. PubMed ID: 27241588 [TBL] [Abstract][Full Text] [Related]
5. Multiple Xanthomonas campestris pv. campestris 8004 type III effectors inhibit immunity induced by flg22. Huang Y; Li T; Xu T; Tang Z; Guo J; Cai Y Planta; 2020 Oct; 252(5):88. PubMed ID: 33057902 [TBL] [Abstract][Full Text] [Related]
6. The type-III effectors-based multiplex PCR for detection of Singh D; Kesharwani AK; Avasthi AS 3 Biotech; 2023 Aug; 13(8):272. PubMed ID: 37449249 [TBL] [Abstract][Full Text] [Related]
7. The C-terminal domain of the type III secretion chaperone HpaB contributes to dissociation of chaperone-effector complex in Xanthomonas campestris pv. campestris. Gan YL; Yang LY; Yang LC; Li WL; Liang XL; Jiang W; Jiang GF; Hang XH; Yang M; Tang JL; Jiang BL PLoS One; 2021; 16(1):e0246033. PubMed ID: 33507993 [TBL] [Abstract][Full Text] [Related]
8. Comparative genomics of the black rot pathogen Ramnarine SDBJ; Jayaraman J; Ramsubhag A PeerJ; 2022; 9():e12632. PubMed ID: 35036136 [TBL] [Abstract][Full Text] [Related]
9. Identification of six type III effector genes with the PIP box in Xanthomonas campestris pv. campestris and five of them contribute individually to full pathogenicity. Jiang W; Jiang BL; Xu RQ; Huang JD; Wei HY; Jiang GF; Cen WJ; Liu J; Ge YY; Li GH; Su LL; Hang XH; Tang DJ; Lu GT; Feng JX; He YQ; Tang JL Mol Plant Microbe Interact; 2009 Nov; 22(11):1401-11. PubMed ID: 19810809 [TBL] [Abstract][Full Text] [Related]
10. Type III secretion-dependent host defence elicitation and type III secretion-independent growth within leaves by Xanthomonas campestris pv. campestris. Sun W; Liu L; Bent AF Mol Plant Pathol; 2011 Oct; 12(8):731-45. PubMed ID: 21726374 [TBL] [Abstract][Full Text] [Related]
11. Chemical Targeting and Manipulation of Type III Secretion in the Phytopathogen Xanthomonas campestris for Control of Disease. Zhou L; Wang C; Wang GH; Wei ZW; Fu QX; Hang XH; Yang M; Jiang BL; Tang JL Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31732574 [No Abstract] [Full Text] [Related]
12. Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Vicente JG; Holub EB Mol Plant Pathol; 2013 Jan; 14(1):2-18. PubMed ID: 23051837 [TBL] [Abstract][Full Text] [Related]
13. Natural genetic variation of Xanthomonas campestris pv. campestris pathogenicity on arabidopsis revealed by association and reverse genetics. Guy E; Genissel A; Hajri A; Chabannes M; David P; Carrere S; Lautier M; Roux B; Boureau T; Arlat M; Poussier S; Noël LD mBio; 2013 Jun; 4(3):e00538-12. PubMed ID: 23736288 [TBL] [Abstract][Full Text] [Related]
14. Arabidopsis membrane protein AMAR1 interaction with type III effector XopAM triggers a hypersensitive response. Xie Q; Wei B; Zhan Z; He Q; Wu K; Chen Y; Liu S; He C; Niu X; Li C; Tang C; Tao J Plant Physiol; 2023 Nov; 193(4):2768-2787. PubMed ID: 37648267 [TBL] [Abstract][Full Text] [Related]
15. Diffusible signal factor primes plant immunity against Zhao Q; Liu F; Song C; Zhai T; He Z; Ma L; Zhao X; Jia Z; Song S Front Cell Infect Microbiol; 2023; 13():1203582. PubMed ID: 37404719 [TBL] [Abstract][Full Text] [Related]
16. [Identification of a new type III effector XC3176 in Xanthomonas campestris pv. campestris]. Yang L; Su H; Yang F; Jian H; Zhou M; Jiang W; Jiang B Wei Sheng Wu Xue Bao; 2015 Oct; 55(10):1264-72. PubMed ID: 26939454 [TBL] [Abstract][Full Text] [Related]
17. Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity. Schulze S; Kay S; Büttner D; Egler M; Eschen-Lippold L; Hause G; Krüger A; Lee J; Müller O; Scheel D; Szczesny R; Thieme F; Bonas U New Phytol; 2012 Sep; 195(4):894-911. PubMed ID: 22738163 [TBL] [Abstract][Full Text] [Related]
18. The Plant Defense Signal Salicylic Acid Activates the RpfB-Dependent Quorum Sensing Signal Turnover via Altering the Culture and Cytoplasmic pH in the Phytopathogen Xanthomonas campestris. Song K; Chen B; Cui Y; Zhou L; Chan KG; Zhang HY; He YW mBio; 2022 Apr; 13(2):e0364421. PubMed ID: 35254135 [TBL] [Abstract][Full Text] [Related]
19. Establishment of an inducing medium for type III effector secretion in Xanthomonas campestris pv. campestris. Jiang GF; Jiang BL; Yang M; Liu S; Liu J; Liang XX; Bai XF; Tang DJ; Lu GT; He YQ; Yu DQ; Tang JL Braz J Microbiol; 2013; 44(3):945-52. PubMed ID: 24516463 [TBL] [Abstract][Full Text] [Related]
20. Loss of chloroplast-localized protein phosphatase 2Cs in Arabidopsis thaliana leads to enhancement of plant immunity and resistance to Xanthomonas campestris pv. campestris infection. Akimoto-Tomiyama C; Tanabe S; Kajiwara H; Minami E; Ochiai H Mol Plant Pathol; 2018 May; 19(5):1184-1195. PubMed ID: 28815858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]