These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 38921866)

  • 1. Perspectives on Advanced Lithium-Sulfur Batteries for Electric Vehicles and Grid-Scale Energy Storage.
    Ni W
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anode Improvement in Rechargeable Lithium-Sulfur Batteries.
    Tao T; Lu S; Fan Y; Lei W; Huang S; Chen Y
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28626966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization.
    Tian Y; Zeng G; Rutt A; Shi T; Kim H; Wang J; Koettgen J; Sun Y; Ouyang B; Chen T; Lun Z; Rong Z; Persson K; Ceder G
    Chem Rev; 2021 Feb; 121(3):1623-1669. PubMed ID: 33356176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoengineering to achieve high efficiency practical lithium-sulfur batteries.
    Cha E; Patel M; Bhoyate S; Prasad V; Choi W
    Nanoscale Horiz; 2020 May; 5(5):808-831. PubMed ID: 32159194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced Nanostructured MXene-Based Materials for High Energy Density Lithium-Sulfur Batteries.
    Tian J; Ji G; Han X; Xing F; Gao Q
    Int J Mol Sci; 2022 Jun; 23(11):. PubMed ID: 35683008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoporous Carbon-Based Materials for Enhancing the Performance of Lithium-Sulfur Batteries.
    Wang F; Han Y; Feng X; Xu R; Li A; Wang T; Deng M; Tong C; Li J; Wei Z
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymers in Lithium-Sulfur Batteries.
    Zhang Q; Huang Q; Hao SM; Deng S; He Q; Lin Z; Yang Y
    Adv Sci (Weinh); 2022 Jan; 9(2):e2103798. PubMed ID: 34741443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced Polymers in Cathodes and Electrolytes for Lithium-Sulfur Batteries: Progress and Prospects.
    Song Z; Jiang W; Li B; Qu Y; Mao R; Jian X; Hu F
    Small; 2024 May; 20(19):e2308550. PubMed ID: 38282057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity.
    Liu Y; Zhou G; Liu K; Cui Y
    Acc Chem Res; 2017 Dec; 50(12):2895-2905. PubMed ID: 29206446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing high-energy lithium-sulfur batteries.
    Seh ZW; Sun Y; Zhang Q; Cui Y
    Chem Soc Rev; 2016 Oct; 45(20):5605-5634. PubMed ID: 27460222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Customized Structure Design and Functional Mechanism Analysis of Carbon Spheres for Advanced Lithium-Sulfur Batteries.
    Kang J; Tian X; Yan C; Wei L; Gao L; Ju J; Zhao Y; Deng N; Cheng B; Kang W
    Small; 2022 Feb; 18(8):e2104469. PubMed ID: 35015928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile Separators Toward Advanced Lithium-Sulfur Batteries: Status, Recent Progress, Challenges and Perspective.
    Zhang M; Zhang X; Liu S; Hou W; Lu Y; Hou L; Luo Y; Liu Y; Yuan C
    ChemSusChem; 2024 May; ():e202400538. PubMed ID: 38763902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress for Concurrent Realization of Shuttle-Inhibition and Dendrite-Free Lithium-Sulfur Batteries.
    Yao W; Xu J; Ma L; Lu X; Luo D; Qian J; Zhan L; Manke I; Yang C; Adelhelm P; Chen R
    Adv Mater; 2023 Aug; 35(32):e2212116. PubMed ID: 36961362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical energy storage for the grid: a battery of choices.
    Dunn B; Kamath H; Tarascon JM
    Science; 2011 Nov; 334(6058):928-35. PubMed ID: 22096188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of recent developments in rechargeable lithium-sulfur batteries.
    Kang W; Deng N; Ju J; Li Q; Wu D; Ma X; Li L; Naebe M; Cheng B
    Nanoscale; 2016 Sep; 8(37):16541-16588. PubMed ID: 27714087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium-sulfur batteries: progress and prospects.
    Manthiram A; Chung SH; Zu C
    Adv Mater; 2015 Mar; 27(12):1980-2006. PubMed ID: 25688969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility.
    Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B
    J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium-Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities.
    Zhao M; Li BQ; Peng HJ; Yuan H; Wei JY; Huang JQ
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):12636-12652. PubMed ID: 31490599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress in High-Performance Lithium Sulfur Batteries: The Emerging Strategies for Advanced Separators/Electrolytes Based on Nanomaterials and Corresponding Interfaces.
    Wang X; Deng N; Wei L; Yang Q; Xiang H; Wang M; Cheng B; Kang W
    Chem Asian J; 2021 Oct; 16(19):2852-2870. PubMed ID: 34265166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.