These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38921869)

  • 1. The Modulation of Compositional Heterogeneity for Controlling Shear Banding in Co-P Metallic Nanoglasses.
    Li T; Li N; Yu T; Zheng G
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical property dependence on compositional heterogeneity in Co-P metallic nanoglasses.
    Li T; Li N; Zhang S; Zheng G
    Sci Rep; 2024 Mar; 14(1):7458. PubMed ID: 38548876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of grain size and composition, topology and excess free volume on the deformation behavior of Cu-Zr nanoglasses.
    Şopu D; Albe K
    Beilstein J Nanotechnol; 2015; 6():537-545. PubMed ID: 33585150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Balancing strength, hardness and ductility of Cu
    Jian WR; Wang L; Yao XH; Luo SN
    Nanotechnology; 2018 Jan; 29(2):025701. PubMed ID: 29211689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metallic Nanoglasses with Promoted β-Relaxation and Tensile Plasticity.
    Yang Q; Pei CQ; Yu HB; Feng T
    Nano Lett; 2021 Jul; 21(14):6051-6056. PubMed ID: 34240612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic structure and structural stability of Sc75Fe25 nanoglasses.
    Fang JX; Vainio U; Puff W; Würschum R; Wang XL; Wang D; Ghafari M; Jiang F; Sun J; Hahn H; Gleiter H
    Nano Lett; 2012 Jan; 12(1):458-63. PubMed ID: 22122554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling the Local Atomic Arrangements in the Shear Band Regions of Metallic Glass.
    Mu X; Chellali MR; Boltynjuk E; Gunderov D; Valiev RZ; Hahn H; Kübel C; Ivanisenko Y; Velasco L
    Adv Mater; 2021 Mar; 33(12):e2007267. PubMed ID: 33604975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic tensile ductility in strain hardening multiprincipal element metallic glass.
    Zhang Z; Zhang S; Wang Q; Lu A; Chen Z; Yang Z; Luan J; Su R; Guan P; Yang Y
    Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2400200121. PubMed ID: 38662550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct measurement of nanostructural change during in situ deformation of a bulk metallic glass.
    Pekin TC; Ding J; Gammer C; Ozdol B; Ophus C; Asta M; Ritchie RO; Minor AM
    Nat Commun; 2019 Jun; 10(1):2445. PubMed ID: 31164643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excess free volume and structural properties of inert gas condensation synthesized nanoparticles based CuZr nanoglasses.
    Zheng K; Yuan S; Hahn H; Branicio PS
    Sci Rep; 2021 Sep; 11(1):19246. PubMed ID: 34584145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic-scale viscoplasticity mechanisms revealed in high ductility metallic glass films.
    Idrissi H; Ghidelli M; Béché A; Turner S; Gravier S; Blandin JJ; Raskin JP; Schryvers D; Pardoen T
    Sci Rep; 2019 Sep; 9(1):13426. PubMed ID: 31530850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the Size-Dependent Shear Banding Behavior in High-Entropy Alloy-Based Nanolayered Glass.
    Dai K; Zhang C; Lu W; Li J
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ductile bulk metallic glass by controlling structural heterogeneities.
    Scudino S; Bian JJ; Shakur Shahabi H; Şopu D; Sort J; Eckert J; Liu G
    Sci Rep; 2018 Jun; 8(1):9174. PubMed ID: 29907778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass.
    Pan J; Ivanov YP; Zhou WH; Li Y; Greer AL
    Nature; 2020 Feb; 578(7796):559-562. PubMed ID: 32103194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoglasses: a new kind of noncrystalline materials.
    Gleiter H
    Beilstein J Nanotechnol; 2013 Sep; 4():517-33. PubMed ID: 24062978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recreating the shear band evolution in nanoscale metallic glass by mimicking the atomistic rolling deformation: a molecular dynamics study.
    Reddy KV; Pal S
    J Mol Model; 2021 Jul; 27(8):220. PubMed ID: 34232386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping Shear Bands in Metallic Glasses: From Atomic Structure to Bulk Dynamics.
    Sheng H; Şopu D; Fellner S; Eckert J; Gammer C
    Phys Rev Lett; 2022 Jun; 128(24):245501. PubMed ID: 35776470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Softening caused by profuse shear banding in a bulk metallic glass.
    Bei H; Xie S; George EP
    Phys Rev Lett; 2006 Mar; 96(10):105503. PubMed ID: 16605757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation-Induced Crystal Growth or Redissolution, and Crystal-Induced Strengthening or Ductilization in Metallic Glasses Containing Nanocrystals.
    Thaiyanurak T; Soonthornkit S; Gordon O; Feng Z; Xu D
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale Structural Evolution and Anomalous Mechanical Response of Nanoglasses by Cryogenic Thermal Cycling.
    Liu WH; Sun BA; Gleiter H; Lan S; Tong Y; Wang XL; Hahn H; Yang Y; Kai JJ; Liu CT
    Nano Lett; 2018 Jul; 18(7):4188-4194. PubMed ID: 29869884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.