These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Engineering correlated insulators in bilayer graphene with a remote Coulomb superlattice. Zhang Z; Xie J; Zhao W; Qi R; Sanborn C; Wang S; Kahn S; Watanabe K; Taniguchi T; Zettl A; Crommie M; Wang F Nat Mater; 2024 Feb; 23(2):189-195. PubMed ID: 38177380 [TBL] [Abstract][Full Text] [Related]
6. Tailoring the Band Structure of Twisted Double Bilayer Graphene with Pressure. Szentpéteri B; Rickhaus P; de Vries FK; Márffy A; Fülöp B; Tóvári E; Watanabe K; Taniguchi T; Kormányos A; Csonka S; Makk P Nano Lett; 2021 Oct; 21(20):8777-8784. PubMed ID: 34662136 [TBL] [Abstract][Full Text] [Related]
7. Band structure engineering of 2D materials using patterned dielectric superlattices. Forsythe C; Zhou X; Watanabe K; Taniguchi T; Pasupathy A; Moon P; Koshino M; Kim P; Dean CR Nat Nanotechnol; 2018 Jul; 13(7):566-571. PubMed ID: 29736033 [TBL] [Abstract][Full Text] [Related]
8. Heterostrain-enabled dynamically tunable moiré superlattice in twisted bilayer graphene. Gao X; Sun H; Kang DH; Wang C; Wang QJ; Nam D Sci Rep; 2021 Nov; 11(1):21402. PubMed ID: 34725380 [TBL] [Abstract][Full Text] [Related]
9. Chern Insulator States with Tunable Chern Numbers in a Graphene Moiré Superlattice. Wang S; Zhang Z; Li H; Sanborn C; Zhao W; Wang S; Watanabe K; Taniguchi T; Crommie MF; Chen G; Wang F Nano Lett; 2024 Jun; 24(23):6838-6843. PubMed ID: 38825784 [TBL] [Abstract][Full Text] [Related]
10. Tunable superlattice in graphene to control the number of Dirac points. Dubey S; Singh V; Bhat AK; Parikh P; Grover S; Sensarma R; Tripathi V; Sengupta K; Deshmukh MM Nano Lett; 2013 Sep; 13(9):3990-5. PubMed ID: 23937358 [TBL] [Abstract][Full Text] [Related]
11. Recent Advances in Moiré Superlattice Systems by Angle-Resolved Photoemission Spectroscopy. Li Y; Wan Q; Xu N Adv Mater; 2023 Sep; ():e2305175. PubMed ID: 37689836 [TBL] [Abstract][Full Text] [Related]
12. Photonic crystals for nano-light in moiré graphene superlattices. Sunku SS; Ni GX; Jiang BY; Yoo H; Sternbach A; McLeod AS; Stauber T; Xiong L; Taniguchi T; Watanabe K; Kim P; Fogler MM; Basov DN Science; 2018 Dec; 362(6419):1153-1156. PubMed ID: 30523109 [TBL] [Abstract][Full Text] [Related]
13. Anisotropic band flattening in graphene with one-dimensional superlattices. Li Y; Dietrich S; Forsythe C; Taniguchi T; Watanabe K; Moon P; Dean CR Nat Nanotechnol; 2021 May; 16(5):525-530. PubMed ID: 33589812 [TBL] [Abstract][Full Text] [Related]
14. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Chen G; Sharpe AL; Gallagher P; Rosen IT; Fox EJ; Jiang L; Lyu B; Li H; Watanabe K; Taniguchi T; Jung J; Shi Z; Goldhaber-Gordon D; Zhang Y; Wang F Nature; 2019 Aug; 572(7768):215-219. PubMed ID: 31316203 [TBL] [Abstract][Full Text] [Related]
15. Fabry-Pérot Resonances in a Graphene/hBN Moiré Superlattice. Handschin C; Makk P; Rickhaus P; Liu MH; Watanabe K; Taniguchi T; Richter K; Schönenberger C Nano Lett; 2017 Jan; 17(1):328-333. PubMed ID: 27960257 [TBL] [Abstract][Full Text] [Related]
16. Tunable Orbital Ferromagnetism at Noninteger Filling of a Moiré Superlattice. Chen G; Sharpe AL; Fox EJ; Wang S; Lyu B; Jiang L; Li H; Watanabe K; Taniguchi T; Crommie MF; Kastner MA; Shi Z; Goldhaber-Gordon D; Zhang Y; Wang F Nano Lett; 2022 Jan; 22(1):238-245. PubMed ID: 34978444 [TBL] [Abstract][Full Text] [Related]
18. Tunable Negative Poisson's Ratio in Van der Waals Superlattice. Li X; Qiang X; Gong Z; Zhang Y; Gong P; Chen L Research (Wash D C); 2021; 2021():1904839. PubMed ID: 33937863 [TBL] [Abstract][Full Text] [Related]
19. Formation of Artificial Fermi Surfaces with a Triangular Superlattice on a Conventional Two-Dimensional Electron Gas. Wang DQ; Krix Z; Sushkov OP; Farrer I; Ritchie DA; Hamilton AR; Klochan O Nano Lett; 2023 Mar; 23(5):1705-1710. PubMed ID: 36790264 [TBL] [Abstract][Full Text] [Related]
20. Observation of Electrically Tunable van Hove Singularities in Twisted Bilayer Graphene from NanoARPES. Jones AJH; Muzzio R; Majchrzak P; Pakdel S; Curcio D; Volckaert K; Biswas D; Gobbo J; Singh S; Robinson JT; Watanabe K; Taniguchi T; Kim TK; Cacho C; Lanata N; Miwa JA; Hofmann P; Katoch J; Ulstrup S Adv Mater; 2020 Aug; 32(31):e2001656. PubMed ID: 32529706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]