BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38922411)

  • 1. Biosynthesis of gold nanoparticles by fungi and its potential in SERS.
    Olvera-Aripez J; Camacho-López S; Flores-Castañeda M; Belman-Rodríguez C; Vilchis-Nestor AR; Castro-Longoria E
    Bioprocess Biosyst Eng; 2024 Jun; ():. PubMed ID: 38922411
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Benedec D; Oniga I; Cuibus F; Sevastre B; Stiufiuc G; Duma M; Hanganu D; Iacovita C; Stiufiuc R; Lucaciu CM
    Int J Nanomedicine; 2018; 13():1041-1058. PubMed ID: 29503540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Labeled Gold Nanoparticles for Surface-Enhanced Raman Scattering.
    Aldosari FMM
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Carboxymethyl Cellulose on the Green Synthesis of Gold Nanoparticles Using
    Horta-Piñeres S; Cortez-Valadez M; Avila DA; Leal-Perez JE; Leyva-Porras CC; Flores-Acosta M; Torres CO
    ACS Omega; 2023 Dec; 8(49):46466-46474. PubMed ID: 38107913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Enhanced Raman Spectroscopy (SERS) Activity of Gold Nanoparticles Prepared Using an Automated Loop Flow Reactor.
    Ma H; Zhang S; Yuan G; Liu Y; Cao X; Kong X; Wang Y
    Appl Spectrosc; 2023 Oct; 77(10):1163-1172. PubMed ID: 37654053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food.
    Sridhar K; Inbaraj BS; Chen BH
    Chemosphere; 2022 Aug; 301():134702. PubMed ID: 35472615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyacrylonitrile as a versatile matrix for gold nanoparticle-based SERS substrates.
    Sharma S; Kumar R; Yadav RM
    Nanoscale Adv; 2024 Feb; 6(4):1065-1073. PubMed ID: 38356638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-dependent apoptotic activity of gold nanoparticles on osteosarcoma cells correlated with SERS signal.
    Chakraborty A; Das A; Raha S; Barui A
    J Photochem Photobiol B; 2020 Jan; 203():111778. PubMed ID: 31931389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green synthesis of gold nanoparticles using fungus Mariannaea sp. HJ and their catalysis in reduction of 4-nitrophenol.
    Pei X; Qu Y; Shen W; Li H; Zhang X; Li S; Zhang Z; Li X
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21649-21659. PubMed ID: 28752308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A green chemistry approach for synthesizing biocompatible gold nanoparticles.
    Gurunathan S; Han J; Park JH; Kim JH
    Nanoscale Res Lett; 2014; 9(1):248. PubMed ID: 24940177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological synergy of greener gold nanoparticles by using Coleus aromaticus leaf extract.
    Boomi P; Ganesan RM; Poorani G; Gurumallesh Prabu H; Ravikumar S; Jeyakanthan J
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():202-210. PubMed ID: 30889692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Starch-mediated synthesis of mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents.
    Lomelí-Marroquín D; Medina Cruz D; Nieto-Argüello A; Vernet Crua A; Chen J; Torres-Castro A; Webster TJ; Cholula-Díaz JL
    Int J Nanomedicine; 2019; 14():2171-2190. PubMed ID: 30988615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver-gold alloy nanoparticles biofabricated by fungal xylanases exhibited potent biomedical and catalytic activities.
    Elegbede JA; Lateef A; Azeez MA; Asafa TB; Yekeen TA; Oladipo IC; Hakeem AS; Beukes LS; Gueguim-Kana EB
    Biotechnol Prog; 2019 Sep; 35(5):e2829. PubMed ID: 31050163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-Aminophenylboronic Acid Conjugation on Responsive Polymer and Gold Nanoparticles for Qualitative Bacterial Detection.
    Wikantyasning ER; Da'i M; Cholisoh Z; Kalsum U
    J Pharm Bioallied Sci; 2023; 15(2):81-87. PubMed ID: 37469647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucosamine to gold nanoparticles binding studied using Raman spectroscopy.
    Mohaček-Grošev V; Brljafa S; Škrabić M; Marić I; Blažek Bregović V; Amendola V; Ropret P; Kvaček Blažević A
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120326. PubMed ID: 34481250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SERS for Detection of Proteinuria: A Comparison of Gold, Silver, Al Tape, and Silicon Substrates for Identification of Elevated Protein Concentration in Urine.
    Aitekenov S; Sultangaziyev A; Boranova A; Dyussupova A; Ilyas A; Gaipov A; Bukasov R
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The exploitation of rice husk biomass for the bio-inspired synthesis of gold nanoparticles as a multifunctional material for various biological and photocatalytic applications.
    Harby AG; El-Borady OM; El-Kemary M
    Bioprocess Biosyst Eng; 2022 Jan; 45(1):61-74. PubMed ID: 34559304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green photoreduction synthesis of dispersible gold nanoparticles and their direct in situ assembling in multidimensional substrates for SERS detection.
    Chen Z; Lu S; Zhang Z; Huang X; Zhao H; Wei J; Li F; Yuan K; Su L; Xiong Y
    Mikrochim Acta; 2022 Jul; 189(8):275. PubMed ID: 35829782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of gold nanoparticles using turnip yellow mosaic virus as an in-solution SERS sensor.
    Nguyen HA; Jupin I; Decorse P; Lau-Truong S; Ammar S; Ha-Duong NT
    RSC Adv; 2019 Oct; 9(55):32296-32307. PubMed ID: 35530810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.