These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 38922456)
1. Multiparametric MRI-based radiomic model for predicting lymph node metastasis after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Wei Q; Chen L; Hou X; Lin Y; Xie R; Yu X; Zhang H; Wen Z; Wu Y; Liu X; Chen W Insights Imaging; 2024 Jun; 15(1):163. PubMed ID: 38922456 [TBL] [Abstract][Full Text] [Related]
2. MRI radiomics signature to predict lymph node metastasis after neoadjuvant chemoradiation therapy in locally advanced rectal cancer. Fang Z; Pu H; Chen XL; Yuan Y; Zhang F; Li H Abdom Radiol (NY); 2023 Jul; 48(7):2270-2283. PubMed ID: 37085730 [TBL] [Abstract][Full Text] [Related]
3. MRI-Based Radiomic Models Outperform Radiologists in Predicting Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Wen L; Liu J; Hu P; Bi F; Liu S; Jian L; Zhu S; Nie S; Cao F; Lu Q; Yu X; Liu K Acad Radiol; 2023 Sep; 30 Suppl 1():S176-S184. PubMed ID: 36739228 [TBL] [Abstract][Full Text] [Related]
4. External validation and comparison of MR-based radiomics models for predicting pathological complete response in locally advanced rectal cancer: a two-centre, multi-vendor study. Wei Q; Chen Z; Tang Y; Chen W; Zhong L; Mao L; Hu S; Wu Y; Deng K; Yang W; Liu X Eur Radiol; 2023 Mar; 33(3):1906-1917. PubMed ID: 36355199 [TBL] [Abstract][Full Text] [Related]
5. Radiomics analysis for prediction of lymph node metastasis after neoadjuvant chemotherapy based on pretreatment MRI in patients with locally advanced cervical cancer. Liu J; Dong L; Zhang X; Wu Q; Yang Z; Zhang Y; Xu C; Wu Q; Wang M Front Oncol; 2024; 14():1376640. PubMed ID: 38779088 [TBL] [Abstract][Full Text] [Related]
6. Machine learning-based multiparametric MRI radiomics for predicting poor responders after neoadjuvant chemoradiotherapy in rectal Cancer patients. Wang J; Chen J; Zhou R; Gao Y; Li J BMC Cancer; 2022 Apr; 22(1):420. PubMed ID: 35439946 [TBL] [Abstract][Full Text] [Related]
7. A multiple-time-scale comparative study for the added value of magnetic resonance imaging-based radiomics in predicting pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Peng W; Wan L; Wang S; Zou S; Zhao X; Zhang H Front Oncol; 2023; 13():1234619. PubMed ID: 37664046 [TBL] [Abstract][Full Text] [Related]
8. Multiparametric magnetic resonance imaging (MRI)-based radiomics model explained by the Shapley Additive exPlanations (SHAP) method for predicting complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicenter retrospective study. Wang Y; Zhang L; Jiang Y; Cheng X; He W; Yu H; Li X; Yang J; Yao G; Lu Z; Zhang Y; Yan S; Zhao F Quant Imaging Med Surg; 2024 Jul; 14(7):4617-4634. PubMed ID: 39022292 [TBL] [Abstract][Full Text] [Related]
9. Development and Validation of a Radiomics Model Based on Lymph-Node Regression Grading After Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Zhang S; Tang B; Yu M; He L; Zheng P; Yan C; Li J; Peng Q Int J Radiat Oncol Biol Phys; 2023 Nov; 117(4):821-833. PubMed ID: 37230433 [TBL] [Abstract][Full Text] [Related]
10. [Construction of a model based on multipoint full-layer puncture biopsy for predicting pathological complete response after neoadjuvant therapy for locally advanced rectal cancer]. Jin Y; Zhai ZW; Sun LT; Xia PD; Hu H; Jiang CQ; Zhao BC; Qu H; Qian Q; Dai Y; Yao HW; Wang ZJ; Han JG Zhonghua Wei Chang Wai Ke Za Zhi; 2024 Apr; 27(4):403-411. PubMed ID: 38644246 [No Abstract] [Full Text] [Related]
11. MRI-based multiregional radiomics for predicting lymph nodes status and prognosis in patients with resectable rectal cancer. Li H; Chen XL; Liu H; Lu T; Li ZL Front Oncol; 2022; 12():1087882. PubMed ID: 36686763 [TBL] [Abstract][Full Text] [Related]
12. MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy. Shin J; Seo N; Baek SE; Son NH; Lim JS; Kim NK; Koom WS; Kim S Radiology; 2022 May; 303(2):351-358. PubMed ID: 35133200 [TBL] [Abstract][Full Text] [Related]
13. Radiomics-Based Pretherapeutic Prediction of Non-response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. Zhou X; Yi Y; Liu Z; Cao W; Lai B; Sun K; Li L; Zhou Z; Feng Y; Tian J Ann Surg Oncol; 2019 Jun; 26(6):1676-1684. PubMed ID: 30887373 [TBL] [Abstract][Full Text] [Related]
14. Prediction of locally advanced rectal cancer response to neoadjuvant chemoradiation therapy using volumetric multiparametric MRI-based radiomics. El Homsi M; Bane O; Fauveau V; Hectors S; Vietti Violi N; Sylla P; Ko HB; Cuevas J; Carbonell G; Nehlsen A; Vanguri R; Viswanath S; Jambawalikar S; Shaish H; Taouli B Abdom Radiol (NY); 2024 Mar; 49(3):791-800. PubMed ID: 38150143 [TBL] [Abstract][Full Text] [Related]
15. Deep learning-based radiomic features for improving neoadjuvant chemoradiation response prediction in locally advanced rectal cancer. Fu J; Zhong X; Li N; Van Dams R; Lewis J; Sung K; Raldow AC; Jin J; Qi XS Phys Med Biol; 2020 Apr; 65(7):075001. PubMed ID: 32092710 [TBL] [Abstract][Full Text] [Related]
16. Radiomics of locally advanced rectal cancer: machine learning-based prediction of response to neoadjuvant chemoradiotherapy using pre-treatment sagittal T2-weighted MRI. Yardimci AH; Kocak B; Sel I; Bulut H; Bektas CT; Cin M; Dursun N; Bektas H; Mermut O; Yardimci VH; Kilickesmez O Jpn J Radiol; 2023 Jan; 41(1):71-82. PubMed ID: 35962933 [TBL] [Abstract][Full Text] [Related]
17. MRI-based pre-Radiomics and delta-Radiomics models accurately predict the post-treatment response of rectal adenocarcinoma to neoadjuvant chemoradiotherapy. Wang L; Wu X; Tian R; Ma H; Jiang Z; Zhao W; Cui G; Li M; Hu Q; Yu X; Xu W Front Oncol; 2023; 13():1133008. PubMed ID: 36925913 [TBL] [Abstract][Full Text] [Related]
18. Multiparametric MRI-based Radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer. Cheng Y; Luo Y; Hu Y; Zhang Z; Wang X; Yu Q; Liu G; Cui E; Yu T; Jiang X Abdom Radiol (NY); 2021 Nov; 46(11):5072-5085. PubMed ID: 34302510 [TBL] [Abstract][Full Text] [Related]
19. Evaluating treatment response to neoadjuvant chemoradiotherapy in rectal cancer using various MRI-based radiomics models. Li Z; Ma X; Shen F; Lu H; Xia Y; Lu J BMC Med Imaging; 2021 Feb; 21(1):30. PubMed ID: 33593304 [TBL] [Abstract][Full Text] [Related]
20. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]