These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38923257)
1. The complex hexaploid oil-Camellia genome traces back its phylogenomic history and multi-omics analysis of Camellia oil biosynthesis. Zhu H; Wang F; Xu Z; Wang G; Hu L; Cheng J; Ge X; Liu J; Chen W; Li Q; Xue F; Liu F; Li W; Wu L; Cheng X; Tang X; Yang C; Lindsey K; Zhang X; Ding F; Hu H; Hu X; Jin S Plant Biotechnol J; 2024 Oct; 22(10):2890-2906. PubMed ID: 38923257 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism. Xia EH; Jiang JJ; Huang H; Zhang LP; Zhang HB; Gao LZ PLoS One; 2014; 9(8):e104150. PubMed ID: 25136805 [TBL] [Abstract][Full Text] [Related]
3. Chromosome-level genome of Camellia lanceoleosa provides a valuable resource for understanding genome evolution and self-incompatibility. Gong W; Xiao S; Wang L; Liao Z; Chang Y; Mo W; Hu G; Li W; Zhao G; Zhu H; Hu X; Ji K; Xiang X; Song Q; Yuan D; Jin S; Zhang L Plant J; 2022 May; 110(3):881-898. PubMed ID: 35306701 [TBL] [Abstract][Full Text] [Related]
4. The reference genome of camellia chekiangoleosa provides insights into camellia evolution and tea oil biosynthesis. Shen TF; Huang B; Xu M; Zhou PY; Ni ZX; Gong C; Wen Q; Cao FL; Xu LA Hortic Res; 2022 Jan; 9():. PubMed ID: 35039868 [TBL] [Abstract][Full Text] [Related]
5. The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication. Lin P; Wang K; Wang Y; Hu Z; Yan C; Huang H; Ma X; Cao Y; Long W; Liu W; Li X; Fan Z; Li J; Ye N; Ren H; Yao X; Yin H Genome Biol; 2022 Jan; 23(1):14. PubMed ID: 35012630 [TBL] [Abstract][Full Text] [Related]
6. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera. Zhang F; Li Z; Zhou J; Gu Y; Tan X BMC Plant Biol; 2021 Jul; 21(1):348. PubMed ID: 34301189 [TBL] [Abstract][Full Text] [Related]
7. Full-Length Transcriptome from Gong W; Song Q; Ji K; Gong S; Wang L; Chen L; Zhang J; Yuan D J Agric Food Chem; 2020 Dec; 68(49):14670-14683. PubMed ID: 33249832 [No Abstract] [Full Text] [Related]
8. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree ( Wu B; Ruan C; Shah AH; Li D; Li H; Ding J; Li J; Du W Cells; 2021 Dec; 11(1):. PubMed ID: 35011633 [TBL] [Abstract][Full Text] [Related]
9. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition. Lin P; Wang K; Zhou C; Xie Y; Yao X; Yin H Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29301285 [No Abstract] [Full Text] [Related]
11. A high-quality chromosomal genome assembly of Diospyros oleiferaCheng. Suo Y; Sun P; Cheng H; Han W; Diao S; Li H; Mai Y; Zhao X; Li F; Fu J Gigascience; 2020 Jan; 9(1):. PubMed ID: 31944244 [TBL] [Abstract][Full Text] [Related]
12. Comparative Transcriptomic and Lipidomic Analysis of Fatty Acid Accumulation in Three Yang D; Wang R; Lai H; He Y; Chen Y; Xun C; Zhang Y; He Z J Agric Food Chem; 2024 Aug; 72(32):18257-18270. PubMed ID: 39084609 [No Abstract] [Full Text] [Related]
13. Genomic in situ hybridization identifies genome donors of Camellia reticulata (Theaceae). Liu LQ; Gu ZJ Plant Sci; 2011 Mar; 180(3):554-9. PubMed ID: 21421404 [TBL] [Abstract][Full Text] [Related]
14. High-Density Genetic Map Construction and Quantitative Trait Locus Analysis of Fruit- and Oil-Related Traits in Lin P; Chai J; Wang A; Zhong H; Wang K Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201527 [No Abstract] [Full Text] [Related]
15. Mitochondrial genome study of Gu Y; Yang L; Zhou J; Xiao Z; Lu M; Zeng Y; Tan X Front Plant Sci; 2024; 15():1396635. PubMed ID: 39290735 [No Abstract] [Full Text] [Related]
16. Determination of the evolutionary pressure on Zhang W; Zhao Y; Yang G; Peng J; Chen S; Xu Z PeerJ; 2019; 7():e7210. PubMed ID: 31289703 [No Abstract] [Full Text] [Related]
17. Chromosome-level genome of putative autohexaploid Actinidia deliciosa provides insights into polyploidisation and evolution. Liu Y; Zhou Y; Cheng F; Zhou R; Yang Y; Wang Y; Zhang X; Soltis DE; Xiao N; Quan Z; Li J Plant J; 2024 Apr; 118(1):73-89. PubMed ID: 38112590 [TBL] [Abstract][Full Text] [Related]
18. Analyses of a chromosome-scale genome assembly reveal the origin and evolution of cultivated chrysanthemum. Song A; Su J; Wang H; Zhang Z; Zhang X; Van de Peer Y; Chen F; Fang W; Guan Z; Zhang F; Wang Z; Wang L; Ding B; Zhao S; Ding L; Liu Y; Zhou L; He J; Jia D; Zhang J; Chen C; Yu Z; Sun D; Jiang J; Chen S; Chen F Nat Commun; 2023 Apr; 14(1):2021. PubMed ID: 37037808 [TBL] [Abstract][Full Text] [Related]
19. Development and cross-species transferability of unigene-derived microsatellite markers in an edible oil woody plant, Camellia oleifera (Theaceae). Jia BG; Lin Q; Feng YZ; Hu XY; Tan XF; Shao FG; Zhang L Genet Mol Res; 2015 Jun; 14(2):6906-16. PubMed ID: 26125898 [TBL] [Abstract][Full Text] [Related]
20. Fatty acids and nutritional components of the seed oil from Wangmo red ball Camellia oleifera grown in the low-heat valley of Guizhou, China. Long L; Gao C; Qiu J; Yang L; Wei H; Zhou Y Sci Rep; 2022 Oct; 12(1):16554. PubMed ID: 36192507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]