These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38923257)
21. Comparative transcriptomic analysis of high- and low-oil Wu B; Ruan C; Han P; Ruan D; Xiong C; Ding J; Liu S 3 Biotech; 2019 Jul; 9(7):257. PubMed ID: 31192082 [TBL] [Abstract][Full Text] [Related]
22. The tetraploid Camellia oleifera genome provides insights into evolution, agronomic traits, and genetic architecture of oil Camellia plants. Zhang L; Shi Y; Gong W; Zhao G; Xiao S; Lin H; Li Y; Liao Z; Zhang S; Hu G; Ye Z; Wang H; Xia Z; Yang Y; Cao H; Zhong S; Zhang X; Yuan D Cell Rep; 2024 Oct; 43(11):114902. PubMed ID: 39489937 [TBL] [Abstract][Full Text] [Related]
23. Simultaneous Targeting of Multiple Gene Homeologs to Alter Seed Oil Production in Camelina sativa. Aznar-Moreno JA; Durrett TP Plant Cell Physiol; 2017 Jul; 58(7):1260-1267. PubMed ID: 28444368 [TBL] [Abstract][Full Text] [Related]
24. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Yang J; Moeinzadeh MH; Kuhl H; Helmuth J; Xiao P; Haas S; Liu G; Zheng J; Sun Z; Fan W; Deng G; Wang H; Hu F; Zhao S; Fernie AR; Boerno S; Timmermann B; Zhang P; Vingron M Nat Plants; 2017 Sep; 3(9):696-703. PubMed ID: 28827752 [TBL] [Abstract][Full Text] [Related]
25. Identification and expression of fructose-1,6-bisphosphate aldolase genes and their relations to oil content in developing seeds of tea oil tree (Camellia oleifera). Zeng Y; Tan X; Zhang L; Jiang N; Cao H PLoS One; 2014; 9(9):e107422. PubMed ID: 25215538 [TBL] [Abstract][Full Text] [Related]
26. Comparative transcriptomic analysis identifies genes responsible for fruit count and oil yield in the oil tea plant Camellia chekiangoleosa. Xie Y; Wang X Sci Rep; 2018 Apr; 8(1):6637. PubMed ID: 29703942 [TBL] [Abstract][Full Text] [Related]
27. Integrated Transcriptome and Metabolome Analysis Reveals Key Metabolites Involved in Yang C; Wu P; Yao X; Sheng Y; Zhang C; Lin P; Wang K Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008957 [No Abstract] [Full Text] [Related]
28. High-Quality Genome Assembly and Annotation Resource of Bao J; Su J; Wang Y; Liang X; Yu H; Zhu X; Li L; Hu H Plant Dis; 2023 Oct; 107(10):3264-3268. PubMed ID: 36935384 [No Abstract] [Full Text] [Related]
29. The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant. Chen JD; Zheng C; Ma JQ; Jiang CK; Ercisli S; Yao MZ; Chen L Hortic Res; 2020; 7():63. PubMed ID: 32377354 [TBL] [Abstract][Full Text] [Related]
30. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil. Wang X; Zeng Q; Del Mar Contreras M; Wang L Food Res Int; 2017 Dec; 102():184-194. PubMed ID: 29195939 [TBL] [Abstract][Full Text] [Related]
31. Comparative chloroplast genomes: insights into the evolution of the chloroplast genome of Camellia sinensis and the phylogeny of Camellia. Li L; Hu Y; He M; Zhang B; Wu W; Cai P; Huo D; Hong Y BMC Genomics; 2021 Feb; 22(1):138. PubMed ID: 33637038 [TBL] [Abstract][Full Text] [Related]
32. Global Transcriptome and Correlation Analysis Reveal Cultivar-Specific Molecular Signatures Associated with Fruit Development and Fatty Acid Determination in Peng S; Lu J; Zhang Z; Ma L; Liu C; Chen Y Int J Genomics; 2020; 2020():6162802. PubMed ID: 32953873 [TBL] [Abstract][Full Text] [Related]
33. TMT-Based Quantitative Proteomic Analysis Reveals the Crucial Biological Pathways Involved in Self-Incompatibility Responses in He Y; Song Q; Wu Y; Ye S; Chen S; Chen H Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32183315 [No Abstract] [Full Text] [Related]
34. Genome Survey and SSR Analysis of Bai Y; Ye L; Yang K; Wang H Genet Res (Camb); 2022; 2022():5417970. PubMed ID: 36407084 [No Abstract] [Full Text] [Related]
35. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes. Dong B; Wu B; Hong W; Li X; Li Z; Xue L; Huang Y PLoS One; 2017; 12(7):e0181835. PubMed ID: 28759610 [TBL] [Abstract][Full Text] [Related]
36. Comparative Transcriptomic Analysis Reveals Regulatory Mechanisms of Theanine Synthesis in Tea ( Tai Y; Ling C; Wang H; Yang L; She G; Wang C; Yu S; Chen W; Liu C; Wan X J Agric Food Chem; 2019 Sep; 67(36):10235-10244. PubMed ID: 31436988 [TBL] [Abstract][Full Text] [Related]
37. Draft genome sequence of Wei C; Yang H; Wang S; Zhao J; Liu C; Gao L; Xia E; Lu Y; Tai Y; She G; Sun J; Cao H; Tong W; Gao Q; Li Y; Deng W; Jiang X; Wang W; Chen Q; Zhang S; Li H; Wu J; Wang P; Li P; Shi C; Zheng F; Jian J; Huang B; Shan D; Shi M; Fang C; Yue Y; Li F; Li D; Wei S; Han B; Jiang C; Yin Y; Xia T; Zhang Z; Bennetzen JL; Zhao S; Wan X Proc Natl Acad Sci U S A; 2018 May; 115(18):E4151-E4158. PubMed ID: 29678829 [TBL] [Abstract][Full Text] [Related]
38. Complementary transcriptome and proteome profiling in the mature seeds of Camellia oleifera from Hainan Island. Ye Z; Wu Y; Ul Haq Muhammad Z; Yan W; Yu J; Zhang J; Yao G; Hu X PLoS One; 2020; 15(2):e0226888. PubMed ID: 32027663 [TBL] [Abstract][Full Text] [Related]
39. Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Jiao Y; Li J; Tang H; Paterson AH Plant Cell; 2014 Jul; 26(7):2792-802. PubMed ID: 25082857 [TBL] [Abstract][Full Text] [Related]
40. Genomic analyses of agronomic traits in tea plants and related Duan S; Yan L; Shen Z; Li X; Chen B; Li D; Qin H; Meegahakumbura MK; Wambulwa MC; Gao L; Chen W; Dong Y; Sheng J Front Plant Sci; 2024; 15():1449006. PubMed ID: 39253572 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]