These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38923283)

  • 1. Insights into Photopolymerization at the Nanoscale Using Surface Plasmon Resonance Imaging.
    Khitous A; Lartigue L; Moreau J; Soppera O
    Small; 2024 Jun; ():e2401885. PubMed ID: 38923283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes.
    Deeb C; Ecoffet C; Bachelot R; Plain J; Bouhelier A; Soppera O
    J Am Chem Soc; 2011 Jul; 133(27):10535-42. PubMed ID: 21618982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deposition of functionalized polymer layers in surface plasmon resonance immunosensors by in-situ polymerization in the evanescent wave field.
    Chegel V; Whitcombe MJ; Turner NW; Piletsky SA
    Biosens Bioelectron; 2009 Jan; 24(5):1270-5. PubMed ID: 18789676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies.
    Ekgasit S; Thammacharoen C; Yu F; Knoll W
    Anal Chem; 2004 Apr; 76(8):2210-9. PubMed ID: 15080730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the plasmon resonance of single metal nanoparticles by near-field anisotropic nanoscale photopolymerization.
    Ibn-El-Ahrach H; Bachelot R; Lérondel G; Vial A; Grimault AS; Plain J; Royer P; Soppera O
    J Microsc; 2008 Mar; 229(Pt 3):421-7. PubMed ID: 18331489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization.
    El Ahrach HI; Bachelot R; Vial A; Lérondel G; Plain J; Royer P; Soppera O
    Phys Rev Lett; 2007 Mar; 98(10):107402. PubMed ID: 17358565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance sensor for antibiotics detection based on photo-initiated polymerization molecularly imprinted array.
    Luo Q; Yu N; Shi C; Wang X; Wu J
    Talanta; 2016 Dec; 161():797-803. PubMed ID: 27769483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Plasmonics: Energy Transport Through Plasmonic Gap.
    Lee J; Jeon DJ; Yeo JS
    Adv Mater; 2021 Nov; 33(47):e2006606. PubMed ID: 33891781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofilm growth monitoring using guided wave ultralong-range Surface Plasmon Resonance: A proof of concept.
    Bajaj A; Abutoama M; Isaacs S; Abuleil MJ; Yaniv K; Kushmaro A; Modic M; Cvelbar U; Abdulhalim I
    Biosens Bioelectron; 2023 May; 228():115204. PubMed ID: 36913883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing Mechanisms of Rough Plasmonic Surfaces for Protein Binding of Surface Plasmon Resonance Detection.
    Treebupachatsakul T; Shinnakerdchoke S; Pechprasarn S
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR).
    Kim II; Kihm KD
    Materials (Basel); 2015 Jul; 8(7):4332-4343. PubMed ID: 28793443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual plasmonic modes in the visible light region in rectangular wave-shaped surface relief plasmonic gratings.
    Hidayat R; Pradana JS; Fariz A; Komalasari S; Chalimah S; Bahar H
    Sci Rep; 2023 Mar; 13(1):5274. PubMed ID: 37002239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-Plasmon- and Green-Light-Induced Polymerization in Mesoporous Thin Silica Films.
    John D; Mohammadi R; Vogel N; Andrieu-Brunsen A
    Langmuir; 2020 Feb; 36(7):1671-1679. PubMed ID: 32045256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct determination of the experimentally observed penetration depth of the evanescent field via near-infrared absorptions enhanced by the off-resonance of surface plasmons.
    Ikehata A; Ohara K; Ozaki Y
    Appl Spectrosc; 2008 May; 62(5):512-6. PubMed ID: 18498692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of Plasmon Wave Packet Motions via Femtosecond Time-Resolved Near-Field Imaging Techniques.
    Nishiyama Y; Imura K; Okamoto H
    Nano Lett; 2015 Nov; 15(11):7657-65. PubMed ID: 26479085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High performance multi-spectral interrogation for surface plasmon resonance imaging sensors.
    Sereda A; Moreau J; Canva M; Maillart E
    Biosens Bioelectron; 2014 Apr; 54():175-80. PubMed ID: 24280047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonance spectroscopy based on evanescent field treatment.
    Ekgasit S; Thammacharoen C; Knoll W
    Anal Chem; 2004 Feb; 76(3):561-8. PubMed ID: 14750847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles.
    Fang Y; Wang H; Yu H; Liu X; Wang W; Chen HY; Tao NJ
    Acc Chem Res; 2016 Nov; 49(11):2614-2624. PubMed ID: 27662069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Plasmonic Fiber-Optic Sensors.
    Qi M; Zhang NMY; Li K; Tjin SC; Wei L
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32521770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-Sensitive Surface Plasmon Resonance Detection by Colocalized 3D Plasmonic Nanogap Arrays.
    Lee W; Son T; Lee C; Oh Y; Kim D
    Methods Mol Biol; 2017; 1571():15-29. PubMed ID: 28281247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.