These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38923372)
1. Pendant Proton-Relays Systematically Tune the Rate and Selectivity of Electrocatalytic Ammonia Generation in a Fe-Porphyrin Based Metal-Organic Framework. Ghatak A; Shanker GS; Sappati S; Liberman I; Shimoni R; Hod I Angew Chem Int Ed Engl; 2024 Sep; 63(37):e202407667. PubMed ID: 38923372 [TBL] [Abstract][Full Text] [Related]
2. Electrostatic Secondary-Sphere Interactions That Facilitate Rapid and Selective Electrocatalytic CO Shimoni R; Shi Z; Binyamin S; Yang Y; Liberman I; Ifraemov R; Mukhopadhyay S; Zhang L; Hod I Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202206085. PubMed ID: 35674328 [TBL] [Abstract][Full Text] [Related]
4. Facile Construction of CuFe-Based Metal Phosphides for Synergistic NO Wang G; Wang C; Tian X; Li Q; Liu S; Zhao X; Waterhouse GIN; Zhao X; Lv X; Xu J Small; 2024 Jun; 20(24):e2311439. PubMed ID: 38161250 [TBL] [Abstract][Full Text] [Related]
5. Study of Electrocatalytic Properties of Metal-Organic Framework PCN-223 for the Oxygen Reduction Reaction. Usov PM; Huffman B; Epley CC; Kessinger MC; Zhu J; Maza WA; Morris AJ ACS Appl Mater Interfaces; 2017 Oct; 9(39):33539-33543. PubMed ID: 28353341 [TBL] [Abstract][Full Text] [Related]
6. Active-Site Modulation in an Fe-Porphyrin-Based Metal-Organic Framework through Ligand Axial Coordination: Accelerating Electrocatalysis and Charge-Transport Kinetics. Liberman I; Shimoni R; Ifraemov R; Rozenberg I; Singh C; Hod I J Am Chem Soc; 2020 Jan; 142(4):1933-1940. PubMed ID: 31910614 [TBL] [Abstract][Full Text] [Related]
7. Balanced NO Hu Y; Liu J; Lee C; Luo W; Dong J; Liang Z; Chen M; Hu E; Zhang M; Debbie Soo XY; Zhu Q; Li F; Rawat RS; Ng MF; Zhong L; Han B; Geng D; Yan Q ACS Nano; 2023 Dec; 17(23):23637-23648. PubMed ID: 37979042 [TBL] [Abstract][Full Text] [Related]
8. N-doped carbon-iron heterointerfaces for boosted electrocatalytic active and selective ammonia production. Zhang S; Li M; Li J; Song Q; Liu X Proc Natl Acad Sci U S A; 2023 Jan; 120(3):e2207080119. PubMed ID: 36623198 [TBL] [Abstract][Full Text] [Related]
9. Assembly of a Metal-Organic Framework (MOF) Membrane on a Solid Electrocatalyst: Introducing Molecular-Level Control Over Heterogeneous CO Mukhopadhyay S; Shimoni R; Liberman I; Ifraemov R; Rozenberg I; Hod I Angew Chem Int Ed Engl; 2021 Jun; 60(24):13423-13429. PubMed ID: 33755294 [TBL] [Abstract][Full Text] [Related]
10. 2D copper-iron bimetallic metal-organic frameworks for reduction of nitrate with boosted efficiency and ammonia selectivity. Ma Q; Xue Y; Zhang C; Chen Y; Teng W; Zhang H; Fan J J Environ Sci (China); 2025 Mar; 149():374-385. PubMed ID: 39181650 [TBL] [Abstract][Full Text] [Related]
11. High-ammonia selective metal-organic framework-derived Co-doped Fe/Fe Zhang S; Li M; Li J; Song Q; Liu X Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35101982 [TBL] [Abstract][Full Text] [Related]
12. Highly Efficient Electrochemical Nitrate Reduction to Ammonia in Strong Acid Conditions with Fe Lv Y; Ke SW; Gu Y; Tian B; Tang L; Ran P; Zhao Y; Ma J; Zuo JL; Ding M Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202305246. PubMed ID: 37158129 [TBL] [Abstract][Full Text] [Related]
13. Insight into Hydrogenation Selectivity of the Electrocatalytic Nitrate-to-Ammonia Reduction Reaction via Enhancing the Proton Transport. Xu YT; Peng Z; Han Y; Zhong H; Yang J; Cao Y ChemSusChem; 2022 Mar; 15(6):e202102450. PubMed ID: 34978758 [TBL] [Abstract][Full Text] [Related]
15. Cascade Electrocatalytic Reduction of Nitrate to Ammonia Using a Heterobimetallic Covalent Organic Framework Composed of Cu-Porphyrin and Co-Bipyridine. Zhou J; Zhao J; Song D; Liu J; Xu W; Li J; Wang N Inorg Chem; 2024 Aug; 63(32):15177-15185. PubMed ID: 39088784 [TBL] [Abstract][Full Text] [Related]
16. Highly Selective Electrochemical Reduction of Dinitrogen to Ammonia at Ambient Temperature and Pressure over Iron Oxide Catalysts. Cui X; Tang C; Liu XM; Wang C; Ma W; Zhang Q Chemistry; 2018 Dec; 24(69):18494-18501. PubMed ID: 29907981 [TBL] [Abstract][Full Text] [Related]
17. Atomically Precise Integration of Multiple Functional Motifs in Catalytic Metal-Organic Frameworks for Highly Efficient Nitrate Electroreduction. Lv Y; Su J; Gu Y; Tian B; Ma J; Zuo JL; Ding M JACS Au; 2022 Dec; 2(12):2765-2777. PubMed ID: 36590266 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical Ammonia Synthesis via NO Reduction on 2D-MOF. Huang B; Chen B; Zhu G; Peng J; Zhang P; Qian Y; Li N Chemphyschem; 2022 Feb; 23(4):e202100785. PubMed ID: 34845837 [TBL] [Abstract][Full Text] [Related]
19. Nickel-Iron-Modified 2D Metal-Organic Framework as a Tunable Precatalyst for Electrochemical Water Oxidation. Binyamin S; Shimoni R; Liberman I; Ifraemov R; Tashakory A; Hod I ACS Appl Mater Interfaces; 2024 Mar; 16(11):13849-13857. PubMed ID: 38469800 [TBL] [Abstract][Full Text] [Related]
20. Molecular Engineering of a Metal-Organic Polymer for Enhanced Electrochemical Nitrate-to-Ammonia Conversion and Zinc Nitrate Batteries. Zhang R; Hong H; Liu X; Zhang S; Li C; Cui H; Wang Y; Liu J; Hou Y; Li P; Huang Z; Guo Y; Zhi C Angew Chem Int Ed Engl; 2023 Nov; 62(48):e202309930. PubMed ID: 37828577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]