These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38923894)

  • 1. Evaluating the Mechanical Strength of Three Dimensionally (3D) Printed Implants in Septorhinoplasty through Finite Element Analysis (FEA).
    Syamal S; Taritsa IC; Alvarez AH; Schuster K; Foppiani J; Kaplan D; Lin SJ
    Plast Reconstr Surg; 2024 Jun; ():. PubMed ID: 38923894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 3D-Printed Bilayer's Bioactive-Biomaterials Scaffold for Full-Thickness Articular Cartilage Defects Treatment.
    Thunsiri K; Pitjamit S; Pothacharoen P; Pruksakorn D; Nakkiew W; Wattanutchariya W
    Materials (Basel); 2020 Aug; 13(15):. PubMed ID: 32756370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and analysis of multi-material structures of 3D printed implants of mandible.
    K K; Karuppudaiyan S; Roy S
    Biomed Phys Eng Express; 2023 Oct; 9(6):. PubMed ID: 37797593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering.
    Zamani Y; Amoabediny G; Mohammadi J; Seddiqi H; Helder MN; Zandieh-Doulabi B; Klein-Nulend J; Koolstra JH
    J Mech Behav Biomed Mater; 2020 Apr; 104():103638. PubMed ID: 32174396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of 3D Printed Poly(lactic acid)/Polycaprolactone Scaffolds Using TGF-β1 for Promoting Bone Regeneration.
    Cheng CH; Shie MY; Lai YH; Foo NP; Lee MJ; Yao CH
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development, Physiochemical characterization, Mechanical and Finite element analysis of 3D printed Polylactide-β-TCP/α-Al
    Mushtaq Alam M; Sugail M; Kannan S
    J Mech Behav Biomed Mater; 2023 Nov; 147():106161. PubMed ID: 37801964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical Application of Three-Dimensionally Printed Biomaterial Polycaprolactone (PCL) in Augmentation Rhinoplasty.
    Park YJ; Cha JH; Bang SI; Kim SY
    Aesthetic Plast Surg; 2019 Apr; 43(2):437-446. PubMed ID: 30498936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the Usability of a Low-Cost 3D Printer in a Tissue Engineering Approach for External Ear Reconstruction.
    Kuhlmann C; Blum JC; Schenck TL; Giunta RE; Wiggenhauser PS
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry.
    Olubamiji AD; Izadifar Z; Si JL; Cooper DM; Eames BF; Chen DX
    Biofabrication; 2016 Jun; 8(2):025020. PubMed ID: 27328736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering.
    Choe R; Devoy E; Kuzemchak B; Sherry M; Jabari E; Packer JD; Fisher JP
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35120345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ethmoid bone is the ideal graft to strengthen nasal septum L-strut among different grafts: An evaluation based on finite element analysis.
    An Y; Shu F; Zhen Y; Wang G; Li X; Li Y; Li D; Zhao Z
    J Plast Reconstr Aesthet Surg; 2022 Nov; 75(11):4304-4311. PubMed ID: 36229315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical Analyses of Porous Designs of 3D-Printed Titanium Implant for Mandibular Segmental Osteotomy Defects.
    Shen YW; Tsai YS; Hsu JT; Shie MY; Huang HL; Fuh LJ
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Diced Cartilage Grafts Shaped with Three-Dimensionally-Printed Bioresorbable Polycaprolactone Molds.
    Canli M; Karasoy Yeşilada A; Ulağ S; Dobral A; Yalçin Ö; Gündüz O
    Plast Reconstr Surg; 2022 Oct; 150(4):800e-809e. PubMed ID: 35895026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites.
    Schipani R; Scheurer S; Florentin R; Critchley SE; Kelly DJ
    Biofabrication; 2020 May; 12(3):035011. PubMed ID: 32252045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-Printed Poly(ε-caprolactone) Scaffold Augmented With Mesenchymal Stem Cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model.
    Zhang ZZ; Wang SJ; Zhang JY; Jiang WB; Huang AB; Qi YS; Ding JX; Chen XS; Jiang D; Yu JK
    Am J Sports Med; 2017 Jun; 45(7):1497-1511. PubMed ID: 28278383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation.
    Cengiz IF; Pereira H; Espregueira-Mendes J; Kwon IK; Reis RL; Oliveira JM
    J Mater Sci Mater Med; 2019 May; 30(6):63. PubMed ID: 31127379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational and experimental mechanical study of nanocomposites for 3D printed scaffolds with a new geometry.
    Kallivokas SV; Kontaxis L; Kakkos I; Deligianni D; Kostopoulos V; Matsopoulos GK
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(ε-caprolactone) scaffolds.
    Ribeiro JFM; Oliveira SM; Alves JL; Pedro AJ; Reis RL; Fernandes EM; Mano JF
    Biofabrication; 2017 May; 9(2):025015. PubMed ID: 28349900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation and comparison of three-dimensional finite element analysis of stress distribution in immediately placed and loaded conventional and customized three-dimensional printed dental implants.
    Saini P; Grover V; Sood S; Jain A; Kalra P
    J Indian Soc Periodontol; 2023; 27(6):590-599. PubMed ID: 38434503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.