These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 38924052)
1. Chinese hamster ovary cell line engineering strategies for modular production of custom extracellular vesicles. Carrillo Sanchez B; Hinchliffe M; Ellis M; Simpson C; Humphreys D; Sweeney B; Bracewell DG Biotechnol Bioeng; 2024 Sep; 121(9):2907-2923. PubMed ID: 38924052 [TBL] [Abstract][Full Text] [Related]
2. Kinetic and functional analysis of abundant microRNAs in extracellular vesicles from normal and stressed cultures of Chinese hamster ovary cells. Belliveau J; Thompson W; Papoutsakis ET Biotechnol Bioeng; 2024 Jan; 121(1):118-130. PubMed ID: 37859509 [TBL] [Abstract][Full Text] [Related]
3. Quantification of protein cargo loading into engineered extracellular vesicles at single-vesicle and single-molecule resolution. Silva AM; Lázaro-Ibáñez E; Gunnarsson A; Dhande A; Daaboul G; Peacock B; Osteikoetxea X; Salmond N; Friis KP; Shatnyeva O; Dekker N J Extracell Vesicles; 2021 Aug; 10(10):e12130. PubMed ID: 34377376 [TBL] [Abstract][Full Text] [Related]
4. GFP-tagging of extracellular vesicles for rapid process development. Carrillo Sanchez B; Hinchliffe M; Bracewell DG Biotechnol J; 2022 Jun; 17(6):e2100583. PubMed ID: 35332662 [TBL] [Abstract][Full Text] [Related]
5. Protein overproduction alters exosome secretion in Chinese hamster ovary cells. Steć A; Targońska M; Karkosińska E; Słowik M; Płoska A; Kalinowski L; Wielgomas B; Waleron K; Jasiecki J; Dziomba S Anal Bioanal Chem; 2023 Jul; 415(16):3167-3176. PubMed ID: 37160422 [TBL] [Abstract][Full Text] [Related]
6. The microRNomes of Chinese hamster ovary (CHO) cells and their extracellular vesicles, and how they respond to osmotic and ammonia stress. Belliveau J; Papoutsakis ET Biotechnol Bioeng; 2023 Sep; 120(9):2700-2716. PubMed ID: 36788116 [TBL] [Abstract][Full Text] [Related]
7. CD81-guided heterologous EVs present heterogeneous interactions with breast cancer cells. Gurrieri E; Carradori G; Roccuzzo M; Pancher M; Peroni D; Belli R; Trevisan C; Notarangelo M; Huang WQ; Carreira ASA; Quattrone A; Jenster G; Hagen TLMT; D'Agostino VG J Biomed Sci; 2024 Oct; 31(1):92. PubMed ID: 39402557 [TBL] [Abstract][Full Text] [Related]
8. Identification of RNA content of CHO-derived extracellular vesicles from a production process. Busch DJ; Zhang Y; Kumar A; Huhn SC; Du Z; Liu R J Biotechnol; 2022 Mar; 348():36-46. PubMed ID: 35292346 [TBL] [Abstract][Full Text] [Related]
9. Extracellular vesicles facilitate large-scale dynamic exchange of proteins and RNA among cultured Chinese hamster ovary and human cells. Belliveau J; Papoutsakis ET Biotechnol Bioeng; 2022 May; 119(5):1222-1238. PubMed ID: 35120270 [TBL] [Abstract][Full Text] [Related]
10. Cell Surface Labeling by Engineered Extracellular Vesicles. Hamilton N; Claudio NM; Armstrong RJ; Pucci F Adv Biosyst; 2020 Dec; 4(12):e2000007. PubMed ID: 32390342 [TBL] [Abstract][Full Text] [Related]
11. Achieving the Promise of Therapeutic Extracellular Vesicles: The Devil is in Details of Therapeutic Loading. Sutaria DS; Badawi M; Phelps MA; Schmittgen TD Pharm Res; 2017 May; 34(5):1053-1066. PubMed ID: 28315083 [TBL] [Abstract][Full Text] [Related]
12. Methods for loading therapeutics into extracellular vesicles and generating extracellular vesicles mimetic-nanovesicles. Nasiri Kenari A; Cheng L; Hill AF Methods; 2020 May; 177():103-113. PubMed ID: 31917274 [TBL] [Abstract][Full Text] [Related]
13. TOP-EVs: Technology of Protein delivery through Extracellular Vesicles is a versatile platform for intracellular protein delivery. Ilahibaks NF; Ardisasmita AI; Xie S; Gunnarsson A; Brealey J; Vader P; de Jong OG; de Jager S; Dekker N; Peacock B; Schiffelers RM; Sluijter JPG; Lei Z J Control Release; 2023 Mar; 355():579-592. PubMed ID: 36746337 [TBL] [Abstract][Full Text] [Related]
14. Reporter gene assay for membrane fusion of extracellular vesicles. Somiya M; Kuroda S J Extracell Vesicles; 2021 Nov; 10(13):e12171. PubMed ID: 34807503 [TBL] [Abstract][Full Text] [Related]
15. Engineering of Extracellular Vesicles for Small Molecule-Regulated Cargo Loading and Cytoplasmic Delivery of Bioactive Proteins. Somiya M; Kuroda S Mol Pharm; 2022 Jul; 19(7):2495-2505. PubMed ID: 35594496 [TBL] [Abstract][Full Text] [Related]
16. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery. Hung ME; Leonard JN J Extracell Vesicles; 2016; 5():31027. PubMed ID: 27189348 [TBL] [Abstract][Full Text] [Related]
17. Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design. Kooijmans SAA; de Jong OG; Schiffelers RM Adv Drug Deliv Rev; 2021 Jun; 173():252-278. PubMed ID: 33798644 [TBL] [Abstract][Full Text] [Related]
18. The lipid-binding D4 domain of perfringolysin O facilitates the active loading of exogenous cargo into extracellular vesicles. Opadele AE; Nishioka S; Wu PH; Le QT; Shirato H; Nam JM; Onodera Y FEBS Lett; 2024 Feb; 598(4):446-456. PubMed ID: 38339784 [TBL] [Abstract][Full Text] [Related]
19. Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression. Lin N; Mascarenhas J; Sealover NR; George HJ; Brooks J; Kayser KJ; Gau B; Yasa I; Azadi P; Archer-Hartmann S Biotechnol Prog; 2015; 31(2):334-46. PubMed ID: 25641927 [TBL] [Abstract][Full Text] [Related]
20. Construction of Fusion Protein for Enhanced Small RNA Loading to Extracellular Vesicles. Es-Haghi M; Neustroeva O; Chowdhury I; Laitinen P; Väänänen MA; Korvenlaita N; Malm T; Turunen MP; Turunen TA Genes (Basel); 2023 Jan; 14(2):. PubMed ID: 36833188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]