These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 38924426)
1. Predicting Outcome of Patients With Cerebral Hemorrhage Using a Computed Tomography-Based Interpretable Radiomics Model: A Multicenter Study. Yang YF; Zhang H; Song XL; Yang C; Hu HJ; Fang TS; Zhang ZH; Zhu X; Yang YY J Comput Assist Tomogr; 2024 Jun; ():. PubMed ID: 38924426 [TBL] [Abstract][Full Text] [Related]
2. An interpretable artificial intelligence model based on CT for prognosis of intracerebral hemorrhage: a multicenter study. Zhang H; Yang YF; Song XL; Hu HJ; Yang YY; Zhu X; Yang C BMC Med Imaging; 2024 Jul; 24(1):170. PubMed ID: 38982357 [TBL] [Abstract][Full Text] [Related]
3. Predicting the pathological invasiveness in patients with a solitary pulmonary nodule via Shapley additive explanations interpretation of a tree-based machine learning radiomics model: a multicenter study. Zhang R; Hong M; Cai H; Liang Y; Chen X; Liu Z; Wu M; Zhou C; Bao C; Wang H; Yang S; Hu Q Quant Imaging Med Surg; 2023 Dec; 13(12):7828-7841. PubMed ID: 38106261 [TBL] [Abstract][Full Text] [Related]
4. Predicting axillary lymph node metastasis in breast cancer patients: A radiomics-based multicenter approach with interpretability analysis. Liu Z; Hong M; Li X; Lin L; Tan X; Liu Y Eur J Radiol; 2024 Jul; 176():111522. PubMed ID: 38805883 [TBL] [Abstract][Full Text] [Related]
5. Multicenter investigation of preoperative distinction between primary central nervous system lymphomas and glioblastomas through interpretable artificial intelligence models. Yang YF; Zhao E; Shi Y; Zhang H; Yang YY Neuroradiology; 2024 Nov; 66(11):1893-1906. PubMed ID: 39225815 [TBL] [Abstract][Full Text] [Related]
6. A Novel Interpretable Radiomics Model to Distinguish Nodular Goiter From Malignant Thyroid Nodules. Zhang H; Yang YF; Yang C; Yang YY; He XH; Chen C; Song XL; Ying LL; Wang Y; Xu LC; Li WT J Comput Assist Tomogr; 2024 Mar-Apr 01; 48(2):334-342. PubMed ID: 37757802 [TBL] [Abstract][Full Text] [Related]
7. From pixels to prognosis: unveiling radiomics models with SHAP and LIME for enhanced interpretability. Raptis S; Ilioudis C; Theodorou K Biomed Phys Eng Express; 2024 Mar; 10(3):. PubMed ID: 38498925 [TBL] [Abstract][Full Text] [Related]
8. Development and validation of an interpretable delta radiomics-based model for predicting invasive ground-glass nodules in lung adenocarcinoma: a retrospective cohort study. Xue T; Zhu L; Tao Y; Ye X; Yu H Quant Imaging Med Surg; 2024 Jun; 14(6):4086-4097. PubMed ID: 38846292 [TBL] [Abstract][Full Text] [Related]
9. Prediction value study of breast cancer tumor infiltrating lymphocyte levels based on ultrasound imaging radiomics. Zhang M; Li X; Zhou P; Zhang P; Wang G; Lin X Front Oncol; 2024; 14():1411261. PubMed ID: 38903726 [TBL] [Abstract][Full Text] [Related]
10. Development and Validation of a Deep Learning Radiomics Model to Predict High-Risk Pathologic Pulmonary Nodules Using Preoperative Computed Tomography. Ye G; Wu G; Li K; Zhang C; Zhuang Y; Liu H; Song E; Qi Y; Li Y; Yang F; Liao Y Acad Radiol; 2024 Apr; 31(4):1686-1697. PubMed ID: 37802672 [TBL] [Abstract][Full Text] [Related]
11. An Interpretable Radiomics Model Based on Two-Dimensional Shear Wave Elastography for Predicting Symptomatic Post-Hepatectomy Liver Failure in Patients with Hepatocellular Carcinoma. Zhong X; Salahuddin Z; Chen Y; Woodruff HC; Long H; Peng J; Xie X; Lin M; Lambin P Cancers (Basel); 2023 Nov; 15(21):. PubMed ID: 37958476 [TBL] [Abstract][Full Text] [Related]
12. A clinical-radiomics nomogram may provide a personalized 90-day functional outcome assessment for spontaneous intracerebral hemorrhage. Song Z; Tang Z; Liu H; Guo D; Cai J; Zhou Z Eur Radiol; 2021 Jul; 31(7):4949-4959. PubMed ID: 33733691 [TBL] [Abstract][Full Text] [Related]
13. Predicting postoperative rehemorrhage in hypertensive intracerebral hemorrhage using noncontrast CT radiomics and clinical data with an interpretable machine learning approach. Wang W; Dai J; Li J; Du X Sci Rep; 2024 Apr; 14(1):9717. PubMed ID: 38678066 [TBL] [Abstract][Full Text] [Related]
15. MRI-based interpretable radiomics nomogram for discrimination between Brucella spondylitis and Pyogenic spondylitis. Yasin P; Yimit Y; Abliz D; Mardan M; Xu T; Yusufu A; Cai X; Sheng W; Mamat M Heliyon; 2024 Jan; 10(1):e23584. PubMed ID: 38173524 [TBL] [Abstract][Full Text] [Related]
16. A radiomics-based interpretable model to predict the pathological grade of pancreatic neuroendocrine tumors. Ye JY; Fang P; Peng ZP; Huang XT; Xie JZ; Yin XY Eur Radiol; 2024 Mar; 34(3):1994-2005. PubMed ID: 37658884 [TBL] [Abstract][Full Text] [Related]
17. Interpretable CT radiomics model for invasiveness prediction in patients with ground-glass nodules. Hong MP; Zhang R; Fan SJ; Liang YT; Cai HJ; Xu MS; Zhou B; Li LS Clin Radiol; 2024 Jan; 79(1):e8-e16. PubMed ID: 37833141 [TBL] [Abstract][Full Text] [Related]
18. Development of an interpretable machine learning model for Ki-67 prediction in breast cancer using intratumoral and peritumoral ultrasound radiomics features. Wang J; Gao W; Lu M; Yao X; Yang D Front Oncol; 2023; 13():1290313. PubMed ID: 38044998 [TBL] [Abstract][Full Text] [Related]
19. Prediction of the Ki-67 expression level in head and neck squamous cell carcinoma with machine learning-based multiparametric MRI radiomics: a multicenter study. Chen W; Lin G; Chen Y; Cheng F; Li X; Ding J; Zhong Y; Kong C; Chen M; Xia S; Lu C; Ji J BMC Cancer; 2024 Apr; 24(1):418. PubMed ID: 38580939 [TBL] [Abstract][Full Text] [Related]
20. An interpretable clinical ultrasound-radiomics combined model for diagnosis of stage I cervical cancer. Yang X; Gao C; Sun N; Qin X; Liu X; Zhang C Front Oncol; 2024; 14():1353780. PubMed ID: 38846980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]