These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Collective dynamics of neuronal activities in various modular networks. Park MU; Bae Y; Lee KS; Song JH; Lee SM; Yoo KH Lab Chip; 2021 Mar; 21(5):951-961. PubMed ID: 33475100 [TBL] [Abstract][Full Text] [Related]
6. A modular brain-on-a-chip for modelling epileptic seizures with functionally connected human neuronal networks. Pelkonen A; Mzezewa R; Sukki L; Ryynänen T; Kreutzer J; Hyvärinen T; Vinogradov A; Aarnos L; Lekkala J; Kallio P; Narkilahti S Biosens Bioelectron; 2020 Nov; 168():112553. PubMed ID: 32877779 [TBL] [Abstract][Full Text] [Related]
7. A novel lab-on-chip platform enabling axotomy and neuromodulation in a multi-nodal network. van de Wijdeven R; Ramstad OH; Valderhaug VD; Köllensperger P; Sandvig A; Sandvig I; Halaas Ø Biosens Bioelectron; 2019 Sep; 140():111329. PubMed ID: 31163396 [TBL] [Abstract][Full Text] [Related]
8. Design, Surface Treatment, Cellular Plating, and Culturing of Modular Neuronal Networks Composed of Functionally Inter-connected Circuits. Kanner S; Bisio M; Cohen G; Goldin M; Tedesco M; Hanein Y; Ben-Jacob E; Barzilai A; Chiappalone M; Bonifazi P J Vis Exp; 2015 Apr; (98):. PubMed ID: 25938894 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic cell engineering on high-density microelectrode arrays for assessing structure-function relationships in living neuronal networks. Sato Y; Yamamoto H; Kato H; Tanii T; Sato S; Hirano-Iwata A Front Neurosci; 2022; 16():943310. PubMed ID: 36699522 [TBL] [Abstract][Full Text] [Related]
11. A 3D neuronal network read-out interface with high recording performance using a neuronal cluster patterning on a microelectrode array. Yoon D; Nam Y Biosens Bioelectron; 2024 Oct; 261():116507. PubMed ID: 38905857 [TBL] [Abstract][Full Text] [Related]
12. Characterization of in vitro neural functional connectivity on a neurofluidic device. Shen X; Wu J; Wang Z; Chen T Electrophoresis; 2019 Nov; 40(22):2996-3004. PubMed ID: 31556965 [TBL] [Abstract][Full Text] [Related]
13. In vitro large-scale experimental and theoretical studies for the realization of bi-directional brain-prostheses. Bonifazi P; Difato F; Massobrio P; Breschi GL; Pasquale V; Levi T; Goldin M; Bornat Y; Tedesco M; Bisio M; Kanner S; Galron R; Tessadori J; Taverna S; Chiappalone M Front Neural Circuits; 2013; 7():40. PubMed ID: 23503997 [TBL] [Abstract][Full Text] [Related]
14. Homeostatic Activity-Dependent Tuning of Recurrent Networks for Robust Propagation of Activity. Gjorgjieva J; Evers JF; Eglen SJ J Neurosci; 2016 Mar; 36(13):3722-34. PubMed ID: 27030758 [TBL] [Abstract][Full Text] [Related]
15. Large-Scale Network Analysis of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Comparative Study. Kaushal M; Oni-Orisan A; Chen G; Li W; Leschke J; Ward D; Kalinosky B; Budde M; Schmit B; Li SJ; Muqeet V; Kurpad S Brain Connect; 2017 Sep; 7(7):413-423. PubMed ID: 28657334 [TBL] [Abstract][Full Text] [Related]
16. Self-organization of in vitro neuronal assemblies drives to complex network topology. Antonello PC; Varley TF; Beggs J; Porcionatto M; Sporns O; Faber J Elife; 2022 Jun; 11():. PubMed ID: 35708741 [TBL] [Abstract][Full Text] [Related]
17. The Profile of Network Spontaneous Activity and Functional Organization Interplay in Hierarchically Connected Modular Neural Networks In Vitro. Pigareva Y; Gladkov A; Kolpakov V; Kazantsev VB; Mukhina I; Pimashkin A Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930702 [TBL] [Abstract][Full Text] [Related]
18. Spike signal transmission between modules and the predictability of spike activity in modular neuronal networks. Yuan Y; Liu J; Zhao P; Huo H; Fang T J Theor Biol; 2021 Oct; 526():110811. PubMed ID: 34133949 [TBL] [Abstract][Full Text] [Related]