These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38924863)
1. A new methodology for determining the central pressure waveform from peripheral measurement using Fourier-based machine learning. Aghilinejad A; Tamborini A; Gharib M Artif Intell Med; 2024 Aug; 154():102918. PubMed ID: 38924863 [TBL] [Abstract][Full Text] [Related]
2. Noninvasive measurement of central vascular pressures with arterial tonometry: clinical revival of the pulse pressure waveform? Nelson MR; Stepanek J; Cevette M; Covalciuc M; Hurst RT; Tajik AJ Mayo Clin Proc; 2010 May; 85(5):460-72. PubMed ID: 20435839 [TBL] [Abstract][Full Text] [Related]
3. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Chen CH; Nevo E; Fetics B; Pak PH; Yin FC; Maughan WL; Kass DA Circulation; 1997 Apr; 95(7):1827-36. PubMed ID: 9107170 [TBL] [Abstract][Full Text] [Related]
4. Patient-specific non-invasive estimation of the aortic blood pressure waveform by ultrasound and tonometry. Zhou S; Xu K; Fang Y; Alastruey J; Vennin S; Yang J; Wang J; Xu L; Wang X; Greenwald SE Comput Methods Programs Biomed; 2024 Apr; 247():108082. PubMed ID: 38422893 [TBL] [Abstract][Full Text] [Related]
8. From peripheral finger-derived pulse waveforms to aortic pressure waveform features: an application of a generalized transfer function. Cox JR; Tan I; Qasem A; Avolio AP; Butlin M Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083360 [TBL] [Abstract][Full Text] [Related]
9. Carotid tonometry versus synthesized aorta pressure waves for the estimation of central systolic blood pressure and augmentation index. Segers P; Rietzschel E; Heireman S; De Buyzere M; Gillebert T; Verdonck P; Van Bortel L Am J Hypertens; 2005 Sep; 18(9 Pt 1):1168-73. PubMed ID: 16245411 [TBL] [Abstract][Full Text] [Related]
10. Parametric model derivation of transfer function for noninvasive estimation of aortic pressure by radial tonometry. Fetics B; Nevo E; Chen CH; Kass DA IEEE Trans Biomed Eng; 1999 Jun; 46(6):698-706. PubMed ID: 10356876 [TBL] [Abstract][Full Text] [Related]
11. A novel non-invasive blood pressure waveform measuring system compared to Millar applanation tonometry. Földi S; Horváth T; Zieger F; Sótonyi P; Cserey G J Clin Monit Comput; 2018 Aug; 32(4):717-727. PubMed ID: 28980101 [TBL] [Abstract][Full Text] [Related]
12. [Pressure wave shape comparison between two non-invasive tonometric devices]. Agnoletti D; Millasseau S; Topouchian J; Zhang Y; Safar ME; Blacher J Ann Cardiol Angeiol (Paris); 2013 Jun; 62(3):193-9. PubMed ID: 23721987 [TBL] [Abstract][Full Text] [Related]
13. Single measurement estimation of central blood pressure using an arterial transfer function. Murphy L; Chase JG Comput Methods Programs Biomed; 2023 Feb; 229():107254. PubMed ID: 36459818 [TBL] [Abstract][Full Text] [Related]
14. The underlying mechanism of intersite discrepancies in ejection time measurements from arterial waveforms and its validation in the Framingham Heart Study. Liu J; Pahlevan NM Am J Physiol Heart Circ Physiol; 2021 Jul; 321(1):H135-H148. PubMed ID: 34018849 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the radial artery applanation tonometry technology for continuous noninvasive blood pressure monitoring compared with central aortic blood pressure measurements in patients with multiple organ dysfunction syndrome. Meidert AS; Huber W; Hapfelmeier A; Schöfthaler M; Müller JN; Langwieser N; Wagner JY; Schmid RM; Saugel B J Crit Care; 2013 Dec; 28(6):908-12. PubMed ID: 23910893 [TBL] [Abstract][Full Text] [Related]
16. Estimating central systolic blood pressure during oscillometric determination of blood pressure: proof of concept and validation by comparison with intra-aortic pressure recording and arterial tonometry. Brett SE; Guilcher A; Clapp B; Chowienczyk P Blood Press Monit; 2012 Jun; 17(3):132-6. PubMed ID: 22466804 [TBL] [Abstract][Full Text] [Related]
17. Estimation of central aortic pressure waveform features derived from the brachial cuff volume displacement waveform. Butlin M; Qasem A; Avolio AP Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2591-4. PubMed ID: 23366455 [TBL] [Abstract][Full Text] [Related]
18. Comparison of non-invasive blood pressure monitoring using modified arterial applanation tonometry with intra-arterial measurement. Harju J; Vehkaoja A; Kumpulainen P; Campadello S; Lindroos V; Yli-Hankala A; Oksala N J Clin Monit Comput; 2018 Feb; 32(1):13-22. PubMed ID: 28105538 [TBL] [Abstract][Full Text] [Related]
19. Radial artery applanation tonometry for continuous noninvasive arterial blood pressure monitoring in the cardiac intensive care unit. Langwieser N; Prechtl L; Meidert AS; Hapfelmeier A; Bradaric C; Ibrahim T; Laugwitz KL; Schmid RM; Wagner JY; Saugel B Clin Res Cardiol; 2015 Jun; 104(6):518-24. PubMed ID: 25618259 [TBL] [Abstract][Full Text] [Related]
20. Validation of the transfer function technique for generating central from peripheral upper limb pressure waveform. Gallagher D; Adji A; O'Rourke MF Am J Hypertens; 2004 Nov; 17(11 Pt 1):1059-67. PubMed ID: 15533735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]