These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38925192)
1. Hierarchical mesoporous TiO Ma S; Xu K; Zhu X; Liu M; Xu Y; Luo K Int J Biol Macromol; 2024 Aug; 274(Pt 2):133380. PubMed ID: 38925192 [TBL] [Abstract][Full Text] [Related]
2. Surface modified of chitosan by TiO Rostami MS; Khodaei MM; Benassi E Int J Biol Macromol; 2024 Aug; 274(Pt 1):133382. PubMed ID: 38914389 [TBL] [Abstract][Full Text] [Related]
3. Adsorption of methyl orange and Cr(VI) on mesoporous TiO2 prepared by hydrothermal method. Asuha S; Zhou XG; Zhao S J Hazard Mater; 2010 Sep; 181(1-3):204-10. PubMed ID: 20510510 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of carboxymethyl starch co (polyacrylamide/ polyacrylic acid) hydrogel for removing methylene blue dye from aqueous solution. Zamani-Babgohari F; Irannejad A; Kalantari Pour M; Khayati GR Int J Biol Macromol; 2024 Jun; 269(Pt 1):132053. PubMed ID: 38704075 [TBL] [Abstract][Full Text] [Related]
5. Adsorption studies of cationic, anionic and azo-dyes via monodispersed Fe3O4 nanoparticles. Chaudhary GR; Saharan P; Kumar A; Mehta SK; Mor S; Umar A J Nanosci Nanotechnol; 2013 May; 13(5):3240-5. PubMed ID: 23858837 [TBL] [Abstract][Full Text] [Related]
6. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. Ma J; Yu F; Zhou L; Jin L; Yang M; Luan J; Tang Y; Fan H; Yuan Z; Chen J ACS Appl Mater Interfaces; 2012 Nov; 4(11):5749-60. PubMed ID: 23062571 [TBL] [Abstract][Full Text] [Related]
7. Selective adsorption of anionic dyes by a macropore magnetic lignin-chitosan adsorbent. Wang H; Chen C; Dai K; Xiang H; Kou J; Guo H; Ying H; Chen X; Wu J Int J Biol Macromol; 2024 Jun; 269(Pt 2):131955. PubMed ID: 38692542 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of novel composite material with spent coffee ground biochar and steel slag zeolite for enhanced dye and phosphate removal. Noorin S; Paul T; Ghosh A; Yee JJ; Park SH Water Environ Res; 2024 Oct; 96(10):e11137. PubMed ID: 39323177 [TBL] [Abstract][Full Text] [Related]
9. Highly efficient simultaneous adsorption and biodegradation of a highly-concentrated anionic dye by a high-surface-area carbon-based biocomposite. Zheng Y; Chen D; Li N; Xu Q; Li H; He J; Lu J Chemosphere; 2017 Jul; 179():139-147. PubMed ID: 28365499 [TBL] [Abstract][Full Text] [Related]
10. Adsorption of methyl orange by synthesized and functionalized-CNTs with 3-aminopropyltriethoxysilane loaded TiO Ahmad A; Razali MH; Mamat M; Mehamod FSB; Anuar Mat Amin K Chemosphere; 2017 Feb; 168():474-482. PubMed ID: 27855344 [TBL] [Abstract][Full Text] [Related]
11. Highly efficient and fast removal of colored pollutants from single and binary systems, using magnetic mesoporous silica. Nicola R; Muntean SG; Nistor MA; Putz AM; Almásy L; Săcărescu L Chemosphere; 2020 Dec; 261():127737. PubMed ID: 32738712 [TBL] [Abstract][Full Text] [Related]
12. Modified nickel ferrite nanocomposite/functionalized chitosan as a novel adsorbent for the removal of acidic dyes. Zeraatkar Moghaddam A; Ghiamati E; Pourashuri A; Allahresani A Int J Biol Macromol; 2018 Dec; 120(Pt B):1714-1725. PubMed ID: 30287362 [TBL] [Abstract][Full Text] [Related]
13. Adsorption and photocatalytic and photosensitised bleaching of acid orange 7 on multilayer mesoporous films of TiO2. Mills A; O'Rourke C; Kalousek V; Rathousky J J Hazard Mater; 2012 Apr; 211-212():182-7. PubMed ID: 21889847 [TBL] [Abstract][Full Text] [Related]
14. Removal of anionic azo dye from aqueous solution via an adsorption-photosensitized regeneration process on a TiO2 surface. Bao N; Li Y; Yu XH; Niu JJ; Wu GL; Xu XH Environ Sci Pollut Res Int; 2013 Feb; 20(2):897-906. PubMed ID: 22544602 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of magnetic biocomposite for efficient adsorption of azo dye from aqueous solution. Sivashankar R; Sathya AB; Krishnakumar U; Sivasubramanian V Ecotoxicol Environ Saf; 2015 Nov; 121():149-53. PubMed ID: 25957848 [TBL] [Abstract][Full Text] [Related]
16. Removal of Azo Dyes from Water Using Natural Aranda-Figueroa MG; Rodríguez-Torres A; Rodríguez A; Bolio-López GI; Salinas-Sánchez DO; Arias-Atayde DM; Romero RJ; Valladares-Cisneros MG Molecules; 2024 Apr; 29(9):. PubMed ID: 38731445 [TBL] [Abstract][Full Text] [Related]
17. Chitosan-lignin-titania nanocomposites for the removal of brilliant black dye from aqueous solution. Masilompane TM; Chaukura N; Mishra SB; Mishra AK Int J Biol Macromol; 2018 Dec; 120(Pt B):1659-1666. PubMed ID: 30261254 [TBL] [Abstract][Full Text] [Related]
18. Preparation of TiO2 nanoparticle from Ti-salt flocculated sludge with dye wastewater. Kim JB; Park HJ; Shon HK; Cho DL; Kim GJ; Choi SW; Kim JH J Nanosci Nanotechnol; 2010 May; 10(5):3260-5. PubMed ID: 20358935 [TBL] [Abstract][Full Text] [Related]
19. Poly(acrylamide) functionalized chitosan: an efficient adsorbent for azo dyes from aqueous solutions. Singh V; Sharma AK; Sanghi R J Hazard Mater; 2009 Jul; 166(1):327-35. PubMed ID: 19097701 [TBL] [Abstract][Full Text] [Related]
20. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye. Zhao DH; Gao HW Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]