These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 38925472)
1. Machine learning for antidepressant treatment selection in depression. Arnold PIM; Janzing JGE; Hommersom A Drug Discov Today; 2024 Aug; 29(8):104068. PubMed ID: 38925472 [TBL] [Abstract][Full Text] [Related]
2. Machine learning, pharmacogenomics, and clinical psychiatry: predicting antidepressant response in patients with major depressive disorder. Bobo WV; Van Ommeren B; Athreya AP Expert Rev Clin Pharmacol; 2022 Aug; 15(8):927-944. PubMed ID: 35968639 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of a Machine Learning Model Based on Pretreatment Symptoms and Electroencephalographic Features to Predict Outcomes of Antidepressant Treatment in Adults With Depression: A Prespecified Secondary Analysis of a Randomized Clinical Trial. Rajpurkar P; Yang J; Dass N; Vale V; Keller AS; Irvin J; Taylor Z; Basu S; Ng A; Williams LM JAMA Netw Open; 2020 Jun; 3(6):e206653. PubMed ID: 32568399 [TBL] [Abstract][Full Text] [Related]
5. Replication of machine learning methods to predict treatment outcome with antidepressant medications in patients with major depressive disorder from STAR*D and CAN-BIND-1. Nunez JJ; Nguyen TT; Zhou Y; Cao B; Ng RT; Chen J; Frey BN; Milev R; Müller DJ; Rotzinger S; Soares CN; Uher R; Kennedy SH; Lam RW PLoS One; 2021; 16(6):e0253023. PubMed ID: 34181661 [TBL] [Abstract][Full Text] [Related]
6. Optimizing precision medicine for second-step depression treatment: a machine learning approach. Curtiss J; Smoller JW; Pedrelli P Psychol Med; 2024 Jul; 54(10):2361-2368. PubMed ID: 38533794 [TBL] [Abstract][Full Text] [Related]
7. Ideal and Reality: The Gap Between Evidence Derived From Randomized Controlled Trial-Based Meta-analysis and Real-World Clinical Practice in Antidepressant Strategy for Depression. Wang H; Wang L; Xiao J J Clin Psychopharmacol; 2020; 40(4):428-429. PubMed ID: 32639301 [No Abstract] [Full Text] [Related]
8. ARPNet: Antidepressant Response Prediction Network for Major Depressive Disorder. Chang B; Choi Y; Jeon M; Lee J; Han KM; Kim A; Ham BJ; Kang J Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31703457 [TBL] [Abstract][Full Text] [Related]
9. Ensemble Learning for Early-Response Prediction of Antidepressant Treatment in Major Depressive Disorder. Pei C; Sun Y; Zhu J; Wang X; Zhang Y; Zhang S; Yao Z; Lu Q J Magn Reson Imaging; 2020 Jul; 52(1):161-171. PubMed ID: 31859419 [TBL] [Abstract][Full Text] [Related]
11. Optimizing prediction of response to antidepressant medications using machine learning and integrated genetic, clinical, and demographic data. Taliaz D; Spinrad A; Barzilay R; Barnett-Itzhaki Z; Averbuch D; Teltsh O; Schurr R; Darki-Morag S; Lerer B Transl Psychiatry; 2021 Jul; 11(1):381. PubMed ID: 34238923 [TBL] [Abstract][Full Text] [Related]
12. Personalized prediction of antidepressant v. placebo response: evidence from the EMBARC study. Webb CA; Trivedi MH; Cohen ZD; Dillon DG; Fournier JC; Goer F; Fava M; McGrath PJ; Weissman M; Parsey R; Adams P; Trombello JM; Cooper C; Deldin P; Oquendo MA; McInnis MG; Huys Q; Bruder G; Kurian BT; Jha M; DeRubeis RJ; Pizzagalli DA Psychol Med; 2019 May; 49(7):1118-1127. PubMed ID: 29962359 [TBL] [Abstract][Full Text] [Related]
13. Personalized Antidepressant Selection and Pathway to Novel Treatments: Clinical Utility of Targeting Inflammation. Jha MK; Trivedi MH Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29329256 [TBL] [Abstract][Full Text] [Related]
14. Early antidepressant treatment response prediction in major depression using clinical and TPH2 DNA methylation features based on machine learning approaches. Chen B; Jiao Z; Shen T; Fan R; Chen Y; Xu Z BMC Psychiatry; 2023 May; 23(1):299. PubMed ID: 37127594 [TBL] [Abstract][Full Text] [Related]
15. Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis. Watts D; Pulice RF; Reilly J; Brunoni AR; Kapczinski F; Passos IC Transl Psychiatry; 2022 Aug; 12(1):332. PubMed ID: 35961967 [TBL] [Abstract][Full Text] [Related]
16. [Prediction and Personalized Medicine of Antidepressant Treatment in Japanese MDD Patient]. Kato M Seishin Shinkeigaku Zasshi; 2016; 118(3):139-146. PubMed ID: 30620509 [TBL] [Abstract][Full Text] [Related]
17. Considerations when selecting an antidepressant: a narrative review for primary care providers treating adults with depression. Montano CB; Jackson WC; Vanacore D; Weisler R Postgrad Med; 2023 Jun; 135(5):449-465. PubMed ID: 36912037 [TBL] [Abstract][Full Text] [Related]
18. ElectroRetinoGraphy toward an exploration of the therapeutic potential of antidepressants in patients with major depressive disorder: A scoping review of the literature. de Deus M; Petit C; Schwitzer T Neurosci Biobehav Rev; 2024 Sep; 164():105833. PubMed ID: 39089420 [TBL] [Abstract][Full Text] [Related]
19. Agomelatine versus other antidepressive agents for major depression. Guaiana G; Gupta S; Chiodo D; Davies SJ; Haederle K; Koesters M Cochrane Database Syst Rev; 2013 Dec; 2013(12):CD008851. PubMed ID: 24343836 [TBL] [Abstract][Full Text] [Related]
20. Antidepressants for the treatment of depression in people with cancer. Ostuzzi G; Matcham F; Dauchy S; Barbui C; Hotopf M Cochrane Database Syst Rev; 2015 Jun; 2015(6):CD011006. PubMed ID: 26029972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]