These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38925515)
1. Improved classification of soil As contamination at continental scale: Resolving class imbalances using machine learning approach. Hu T; Li K; Ma C; Zhou N; Chen Q; Qi C Chemosphere; 2024 Sep; 363():142697. PubMed ID: 38925515 [TBL] [Abstract][Full Text] [Related]
2. Mapping soil arsenic pollution at a brownfield site using satellite hyperspectral imagery and machine learning. Jia X; Hou D Sci Total Environ; 2023 Jan; 857(Pt 2):159387. PubMed ID: 36240926 [TBL] [Abstract][Full Text] [Related]
3. Diagnosis of cadmium contamination in urban and suburban soils using visible-to-near-infrared spectroscopy. Hong Y; Chen Y; Shen R; Chen S; Xu G; Cheng H; Guo L; Wei Z; Yang J; Liu Y; Shi Z; Mouazen AM Environ Pollut; 2021 Dec; 291():118128. PubMed ID: 34530244 [TBL] [Abstract][Full Text] [Related]
4. Feature fusion improves performance and interpretability of machine learning models in identifying soil pollution of potentially contaminated sites. Lu X; Du J; Zheng L; Wang G; Li X; Sun L; Huang X Ecotoxicol Environ Saf; 2023 Jul; 259():115052. PubMed ID: 37224784 [TBL] [Abstract][Full Text] [Related]
5. Quantifying the impact of factors on soil available arsenic using machine learning. Han Z; Yang J; Yan Y; Zhao C; Wan X; Ma C; Shi H Environ Pollut; 2024 Oct; 359():124572. PubMed ID: 39029859 [TBL] [Abstract][Full Text] [Related]
6. Prediction of diabetes disease using an ensemble of machine learning multi-classifier models. Abnoosian K; Farnoosh R; Behzadi MH BMC Bioinformatics; 2023 Sep; 24(1):337. PubMed ID: 37697283 [TBL] [Abstract][Full Text] [Related]
7. Machine learning approach for assessment of arsenic levels using physicochemical properties of water, soil, elevation, and land cover. Kumar S; Pati J Environ Monit Assess; 2023 May; 195(6):641. PubMed ID: 37145302 [TBL] [Abstract][Full Text] [Related]
8. Estimating lead and zinc concentrations in peri-urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest. Hong Y; Shen R; Cheng H; Chen Y; Zhang Y; Liu Y; Zhou M; Yu L; Liu Y; Liu Y Sci Total Environ; 2019 Feb; 651(Pt 2):1969-1982. PubMed ID: 30321720 [TBL] [Abstract][Full Text] [Related]
9. Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field. Jia X; Cao Y; O'Connor D; Zhu J; Tsang DCW; Zou B; Hou D Environ Pollut; 2021 Feb; 270():116281. PubMed ID: 33348140 [TBL] [Abstract][Full Text] [Related]
10. Exploring relationship of soil PTE geochemical and "VIS-NIR spectroscopy" patterns near Cu-Mo mine (Armenia). Tepanosyan G; Muradyan V; Tepanosyan G; Avetisyan R; Asmaryan S; Sahakyan L; Denk M; Gläßer C Environ Pollut; 2023 Apr; 323():121180. PubMed ID: 36736565 [TBL] [Abstract][Full Text] [Related]
11. VIRS based detection in combination with machine learning for mapping soil pollution. Jia X; O'Connor D; Shi Z; Hou D Environ Pollut; 2021 Jan; 268(Pt A):115845. PubMed ID: 33120345 [TBL] [Abstract][Full Text] [Related]
12. Assessing spatial variability of soil petroleum contamination using visible near-infrared diffuse reflectance spectroscopy. Chakraborty S; Weindorf DC; Zhu Y; Li B; Morgan CL; Ge Y; Galbraith J J Environ Monit; 2012 Nov; 14(11):2886-92. PubMed ID: 22986574 [TBL] [Abstract][Full Text] [Related]
13. Evaluating Leaf and Canopy Reflectance of Stressed Rice Plants to Monitor Arsenic Contamination. Bandaru V; Daughtry CS; Codling EE; Hansen DJ; White-Hansen S; Green CE Int J Environ Res Public Health; 2016 Jun; 13(6):. PubMed ID: 27322304 [TBL] [Abstract][Full Text] [Related]
14. Analysis of visible and near infrared spectral reflectance for assessing metals in soil. Rathod PH; Müller I; Van der Meer FD; de Smeth B Environ Monit Assess; 2015 Oct; 188(10):558. PubMed ID: 27614958 [TBL] [Abstract][Full Text] [Related]
15. Development and application of machine learning models for prediction of soil available cadmium based on soil properties and climate features. Yang Z; Xia H; Guo Z; Xie Y; Liao Q; Yang W; Li Q; Dong C; Si M Environ Pollut; 2024 Aug; 355():124148. PubMed ID: 38735457 [TBL] [Abstract][Full Text] [Related]
16. Integrated assessment of potentially toxic elements in soil of the Kangdian metallogenic province: A two-point machine learning approach. Yang W; Zhang L; Gao B; Liu X; Duan X; Wang C; Zhang Y; Li Q; Wang L Ecotoxicol Environ Saf; 2024 May; 276():116248. PubMed ID: 38579531 [TBL] [Abstract][Full Text] [Related]
17. Predicting the efficiency of arsenic immobilization in soils by biochar using machine learning. Cao JM; Liu YQ; Liu YQ; Xue SD; Xiong HH; Xu CL; Xu Q; Duan GL J Environ Sci (China); 2025 Jan; 147():259-267. PubMed ID: 39003045 [TBL] [Abstract][Full Text] [Related]
18. A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning: A case study in the Yangtze Delta, China. Jia X; Hu B; Marchant BP; Zhou L; Shi Z; Zhu Y Environ Pollut; 2019 Jul; 250():601-609. PubMed ID: 31031218 [TBL] [Abstract][Full Text] [Related]
19. Visible and near-infrared reflectance spectroscopy-an alternative for monitoring soil contamination by heavy metals. Shi T; Chen Y; Liu Y; Wu G J Hazard Mater; 2014 Jan; 265():166-76. PubMed ID: 24361494 [TBL] [Abstract][Full Text] [Related]
20. [Analysis of visible and near-infrared spectra of As-contaminated soil in croplands beside mines]. Ren HY; Zhuang DF; Qiu DS; Pan JJ Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):114-8. PubMed ID: 19385218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]