BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38925631)

  • 1. Gold-Hydrogel Nanocomposites for High-Resolution Laser-Based 3D Printing of Scaffolds with SERS-Sensing Properties.
    Ventisette I; Mattii F; Dallari C; Capitini C; Calamai M; Muzzi B; Pavone FS; Carpi F; Credi C
    ACS Appl Bio Mater; 2024 Jun; ():. PubMed ID: 38925631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing of chitooligosaccharide-polyethylene glycol diacrylate hydrogel inks for bone tissue regeneration.
    Rajabi M; Cabral JD; Saunderson S; Ali MA
    J Biomed Mater Res A; 2023 Sep; 111(9):1468-1481. PubMed ID: 37066870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the molecular weight on the sensing mechanism in polyethylene glycol diacrylate/gold nanocomposite optical transducers.
    Miranda B; Dello Iacono S; Rea I; Borbone F; De Stefano L
    Heliyon; 2024 Feb; 10(3):e25593. PubMed ID: 38356564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocellulose/PEGDA aerogel scaffolds with tunable modulus prepared by stereolithography for three-dimensional cell culture.
    Tang A; Li J; Li J; Zhao S; Liu W; Liu T; Wang J; Liu Y
    J Biomater Sci Polym Ed; 2019 Jul; 30(10):797-814. PubMed ID: 30940007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel bioprinting method and system for forming hybrid tissue engineering constructs.
    Shanjani Y; Pan CC; Elomaa L; Yang Y
    Biofabrication; 2015 Dec; 7(4):045008. PubMed ID: 26685102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and Comparative Quantitative Analysis of Plasmonic-Polymer Nanocomposites as Optical Platforms.
    Folks C; Phuyal US; Rajesh M; Arja N; Gladden M; Hamm L; De Silva Indrasekara AS
    Langmuir; 2021 Nov; 37(44):12853-12866. PubMed ID: 34705467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.
    Goyanes A; Det-Amornrat U; Wang J; Basit AW; Gaisford S
    J Control Release; 2016 Jul; 234():41-8. PubMed ID: 27189134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompliant Composite Au/pHEMA Plasmonic Scaffolds for 3D Cell Culture and Noninvasive Sensing of Cellular Metabolites.
    Lehman SE; McCracken JM; Miller LA; Jayalath S; Nuzzo RG
    Adv Healthc Mater; 2021 Feb; 10(4):e2001040. PubMed ID: 32902201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradient Poly(ethylene glycol) Diacrylate and Cellulose Nanocrystals Tissue Engineering Composite Scaffolds via Extrusion Bioprinting.
    Frost BA; Sutliff BP; Thayer P; Bortner MJ; Foster EJ
    Front Bioeng Biotechnol; 2019; 7():280. PubMed ID: 31681754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and optimisation of hydroxyapatite-polyethylene glycol diacrylate hydrogel inks for 3D printing of bone tissue engineered scaffolds.
    Rajabi M; Cabral JD; Saunderson S; Gould M; Ali MA
    Biomed Mater; 2023 Sep; 18(6):. PubMed ID: 37699400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect.
    Abdelrasoul GN; Farkas B; Romano I; Diaspro A; Beke S
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():305-10. PubMed ID: 26249594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography.
    Morris VB; Nimbalkar S; Younesi M; McClellan P; Akkus O
    Ann Biomed Eng; 2017 Jan; 45(1):286-296. PubMed ID: 27164837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereolithographic Visible-Light Printing of Poly(l-glutamic acid) Hydrogel Scaffolds.
    Viray CM; van Magill B; Zreiqat H; Ramaswamy Y
    ACS Biomater Sci Eng; 2022 Mar; 8(3):1115-1131. PubMed ID: 35179029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SERS-Active Printable Hydrogel for 3D Cell Culture and Imaging.
    Wang W; Vikesland PJ
    Anal Chem; 2023 Dec; 95(49):18055-18064. PubMed ID: 37934619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of 3D printed bone tissue engineering scaffolds in the stem cell field.
    Su X; Wang T; Guo S
    Regen Ther; 2021 Mar; 16():63-72. PubMed ID: 33598507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereolithography 3D Bioprinting.
    Kumar H; Kim K
    Methods Mol Biol; 2020; 2140():93-108. PubMed ID: 32207107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printing of Cantilever-Type Microstructures by Stereolithography of Ferromagnetic Photopolymers.
    Credi C; Fiorese A; Tironi M; Bernasconi R; Magagnin L; Levi M; Turri S
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26332-26342. PubMed ID: 27610704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering.
    Bandyopadhyay A; Mandal BB; Bhardwaj N
    J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.