These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38926277)
21. Recombinant Protein Production from Stable CHO Cell Pools. Delafosse L; Lord-Dufour S; Pelletier A; Perret S; Burlacu A; Ouimet M; Cass B; Joubert S; Stuible M; Durocher Y Methods Mol Biol; 2024; 2810():99-121. PubMed ID: 38926275 [TBL] [Abstract][Full Text] [Related]
22. Counterselection and co-delivery of transposon and transposase functions for Sleeping Beauty-mediated transposition in cultured mammalian cells. Converse AD; Belur LR; Gori JL; Liu G; Amaya F; Aguilar-Cordova E; Hackett PB; McIvor RS Biosci Rep; 2004 Dec; 24(6):577-94. PubMed ID: 16158196 [TBL] [Abstract][Full Text] [Related]
23. Integration and long-term expression in xenografted human glioblastoma cells using a plasmid-based transposon system. Ohlfest JR; Lobitz PD; Perkinson SG; Largaespada DA Mol Ther; 2004 Aug; 10(2):260-8. PubMed ID: 15294173 [TBL] [Abstract][Full Text] [Related]
24. Construction of a Tc1-like transposon Sleeping Beauty-based gene transfer plasmid vector for generation of stable transgenic mammalian cell clones. Harris JW; Strong DD; Amoui M; Baylink DJ; Lau KH Anal Biochem; 2002 Nov; 310(1):15-26. PubMed ID: 12413468 [TBL] [Abstract][Full Text] [Related]
25. Large-Scale Transient Transfection of Chinese Hamster Ovary Cells in Suspension. Rajendra Y; Balasubramanian S; Hacker DL Methods Mol Biol; 2017; 1603():45-55. PubMed ID: 28493122 [TBL] [Abstract][Full Text] [Related]
26. Generation of High Expressing Chinese Hamster Ovary Cell Pools Using the Leap-In Transposon System. Balasubramanian S; Peery RB; Minshull J; Lee M; White R; Kelly RM; Barnard GC Biotechnol J; 2018 Oct; 13(10):e1700748. PubMed ID: 29797786 [TBL] [Abstract][Full Text] [Related]
27. Generation of stable Chinese hamster ovary pools yielding antibody titers of up to 7.6 g/L using the piggyBac transposon system. Rajendra Y; Peery RB; Barnard GC Biotechnol Prog; 2016 Sep; 32(5):1301-1307. PubMed ID: 27254818 [TBL] [Abstract][Full Text] [Related]
28. Exogenous mRNA delivery and bioavailability in gene transfer mediated by piggyBac transposition. Bire S; Gosset D; Jégot G; Midoux P; Pichon C; Rouleux-Bonnin F BMC Biotechnol; 2013 Sep; 13():75. PubMed ID: 24070093 [TBL] [Abstract][Full Text] [Related]
29. An optimized polymeric delivery system for piggyBac transposition. Meenakshi Sundaram DN; Bahadur K C R; Fu W; Uludağ H Biotechnol Bioeng; 2024 May; 121(5):1503-1517. PubMed ID: 38372658 [TBL] [Abstract][Full Text] [Related]
30. Cognate restriction of transposition by piggyBac-like proteins. Beckermann TM; Luo W; Wilson CM; Veach RA; Wilson MH Nucleic Acids Res; 2021 Aug; 49(14):8135-8144. PubMed ID: 34232995 [TBL] [Abstract][Full Text] [Related]
31. Polyethyleneimine-based transient gene expression processes for suspension-adapted HEK-293E and CHO-DG44 cells. Hacker DL; Kiseljak D; Rajendra Y; Thurnheer S; Baldi L; Wurm FM Protein Expr Purif; 2013 Nov; 92(1):67-76. PubMed ID: 24021764 [TBL] [Abstract][Full Text] [Related]
32. A Versatile Method for Inducible Protein Production in 293 Cells Using the PiggyBac Transposon System. Michael IP Methods Mol Biol; 2024; 2810():123-135. PubMed ID: 38926276 [TBL] [Abstract][Full Text] [Related]
33. A versatile, highly efficient, and potentially safer piggyBac transposon system for mammalian genome manipulations. Meir YJ; Lin A; Huang MF; Lin JR; Weirauch MT; Chou HC; Lin SJ; Wu SC FASEB J; 2013 Nov; 27(11):4429-43. PubMed ID: 23896728 [TBL] [Abstract][Full Text] [Related]
34. Dimerization through the RING-Finger Domain Attenuates Excision Activity of the piggyBac Transposase. Sharma R; Nirwal S; Narayanan N; Nair DT Biochemistry; 2018 May; 57(20):2913-2922. PubMed ID: 29750515 [TBL] [Abstract][Full Text] [Related]
35. [Effect of transposase on the transposition activity of piggyBac transposon transfected into Toxoplasma gondii]. Song XS; Wei F; Zhang YG; Cao LL; Liu Q Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2013 Jun; 31(3):244-5. PubMed ID: 24812869 [TBL] [Abstract][Full Text] [Related]
36. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Wu SC; Meir YJ; Coates CJ; Handler AM; Pelczar P; Moisyadi S; Kaminski JM Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15008-13. PubMed ID: 17005721 [TBL] [Abstract][Full Text] [Related]
37. Manipulating piggyBac transposon chromosomal integration site selection in human cells. Kettlun C; Galvan DL; George AL; Kaja A; Wilson MH Mol Ther; 2011 Sep; 19(9):1636-44. PubMed ID: 21730970 [TBL] [Abstract][Full Text] [Related]
38. Recombinant Antibody-Producing Stable CHOK1 Pool Stability Study. Tu B; Lin Z; Moore J; Krishnan Sekaran A; Wesley MJ; Mao Y; Gibson M; Lai WC; Boggs J; Slowik T; Perez-Gelvez YNC; Bonn R; Rae T; Minshull J; Boldog F; Sitaraman V; Muerhoff S; Hemken P Monoclon Antib Immunodiagn Immunother; 2024 Aug; 43(4):119-126. PubMed ID: 39034896 [TBL] [Abstract][Full Text] [Related]
39. Virus-free transient protein production in Sf9 cells. Shen X; Hacker DL; Baldi L; Wurm FM J Biotechnol; 2014 Feb; 171():61-70. PubMed ID: 24333123 [TBL] [Abstract][Full Text] [Related]
40. A robust transfection reagent for the transfection of CHO and HEK293 cells and production of recombinant proteins and lentiviral particles - PTG1. Gonçalves C; Gross F; Guégan P; Cheradame H; Midou P Biotechnol J; 2014 Nov; 9(11):1380-8. PubMed ID: 25215936 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]