These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 38926583)

  • 1. Transposase-assisted target-site integration for efficient plant genome engineering.
    Liu P; Panda K; Edwards SA; Swanson R; Yi H; Pandesha P; Hung YH; Klaas G; Ye X; Collins MV; Renken KN; Gilbertson LA; Veena V; Hancock CN; Slotkin RK
    Nature; 2024 Jul; 631(8021):593-600. PubMed ID: 38926583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems.
    Zhang Y; Ren Q; Tang X; Liu S; Malzahn AA; Zhou J; Wang J; Yin D; Pan C; Yuan M; Huang L; Yang H; Zhao Y; Fang Q; Zheng X; Tian L; Cheng Y; Le Y; McCoy B; Franklin L; Selengut JD; Mount SM; Que Q; Zhang Y; Qi Y
    Nat Commun; 2021 Mar; 12(1):1944. PubMed ID: 33782402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-mediated targeted T-DNA integration in rice.
    Lee K; Eggenberger AL; Banakar R; McCaw ME; Zhu H; Main M; Kang M; Gelvin SB; Wang K
    Plant Mol Biol; 2019 Mar; 99(4-5):317-328. PubMed ID: 30645710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Engineered Cas-Transposon System for Programmable and Site-Directed DNA Transpositions.
    Chen SP; Wang HH
    CRISPR J; 2019 Dec; 2(6):376-394. PubMed ID: 31742433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM.
    Endo M; Mikami M; Endo A; Kaya H; Itoh T; Nishimasu H; Nureki O; Toki S
    Nat Plants; 2019 Jan; 5(1):14-17. PubMed ID: 30531939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-guided DNA insertion with CRISPR-associated transposases.
    Strecker J; Ladha A; Gardner Z; Schmid-Burgk JL; Makarova KS; Koonin EV; Zhang F
    Science; 2019 Jul; 365(6448):48-53. PubMed ID: 31171706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins.
    Woo JW; Kim J; Kwon SI; Corvalán C; Cho SW; Kim H; Kim SG; Kim ST; Choe S; Kim JS
    Nat Biotechnol; 2015 Nov; 33(11):1162-4. PubMed ID: 26479191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target Specificity of the CRISPR-Cas9 System in
    Zou P; Duan L; Zhang S; Bai X; Liu Z; Jin F; Sun H; Xu W; Chen R
    J Comput Biol; 2020 Oct; 27(10):1544-1552. PubMed ID: 32298599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
    Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T
    Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Era of CRISPR/ Cas9 Mediated Plant Genome Editing.
    Khurshid H; Jan SA; Shinwari ZK; Jamal M; Shah SH
    Curr Issues Mol Biol; 2018; 26():47-54. PubMed ID: 28879855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural and Engineered Guide RNA-Directed Transposition with CRISPR-Associated Tn7-Like Transposons.
    Hsieh SC; Peters JE
    Annu Rev Biochem; 2024 Aug; 93(1):139-161. PubMed ID: 38598855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 for Mutagenesis in Rice.
    Char SN; Li R; Yang B
    Methods Mol Biol; 2019; 1864():279-293. PubMed ID: 30415343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted deletion of rice retrotransposon Tos17 via CRISPR/Cas9.
    Saika H; Mori A; Endo M; Toki S
    Plant Cell Rep; 2019 Apr; 38(4):455-458. PubMed ID: 30465094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplex nucleotide editing by high-fidelity Cas9 variants with improved efficiency in rice.
    Xu W; Song W; Yang Y; Wu Y; Lv X; Yuan S; Liu Y; Yang J
    BMC Plant Biol; 2019 Nov; 19(1):511. PubMed ID: 31752697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cas9/sgRNA-based genome editing and other reverse genetic approaches for functional genomic studies in rice.
    Moin M; Bakshi A; Madhav MS; Kirti PB
    Brief Funct Genomics; 2018 Sep; 17(5):339-351. PubMed ID: 29579147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis.
    Ali Z; Eid A; Ali S; Mahfouz MM
    Virus Res; 2018 Jan; 244():333-337. PubMed ID: 29051052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/dCas9-mediated transposition with specificity and efficiency of site-directed genomic insertions.
    Goshayeshi L; Yousefi Taemeh S; Dehdilani N; Nasiri M; Ghahramani Seno MM; Dehghani H
    FASEB J; 2021 Feb; 35(2):e21359. PubMed ID: 33496003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles.
    Hyun Y; Kim J; Cho SW; Choi Y; Kim JS; Coupland G
    Planta; 2015 Jan; 241(1):271-84. PubMed ID: 25269397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary and mechanistic diversity of Type I-F CRISPR-associated transposons.
    Klompe SE; Jaber N; Beh LY; Mohabir JT; Bernheim A; Sternberg SH
    Mol Cell; 2022 Feb; 82(3):616-628.e5. PubMed ID: 35051352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.