These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 38926796)

  • 1. cGAS-ISG15-RAGE axis reprogram necroptotic microenvironment and promote lymphatic metastasis in head and neck cancer.
    Li J; Tan J; Wang T; Yu S; Guo G; Li K; Yang L; Zeng B; Mei X; Gao S; Lao X; Zhang S; Liao G; Liang Y
    Exp Hematol Oncol; 2024 Jun; 13(1):63. PubMed ID: 38926796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Necroptosis in head and neck squamous cell carcinoma: characterization of clinicopathological relevance and in vitro cell model.
    Li J; Huang S; Zeng L; Li K; Yang L; Gao S; Guan C; Zhang S; Lao X; Liao G; Liang Y
    Cell Death Dis; 2020 May; 11(5):391. PubMed ID: 32444644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix stiffness induces an invasive-dormant subpopulation via cGAS-STING axis in oral cancer.
    Jingyuan L; Yu L; Hong J; Tao W; Kan L; Xiaomei L; Guiqing L; Yujie L
    Transl Oncol; 2023 Jul; 33():101681. PubMed ID: 37137218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA N6-methyladenosine reader IGF2BP2 promotes lymphatic metastasis and epithelial-mesenchymal transition of head and neck squamous carcinoma cells via stabilizing slug mRNA in an m6A-dependent manner.
    Yu D; Pan M; Li Y; Lu T; Wang Z; Liu C; Hu G
    J Exp Clin Cancer Res; 2022 Jan; 41(1):6. PubMed ID: 34980207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting STAT3/miR-21 axis inhibits epithelial-mesenchymal transition via regulating CDK5 in head and neck squamous cell carcinoma.
    Sun SS; Zhou X; Huang YY; Kong LP; Mei M; Guo WY; Zhao MH; Ren Y; Shen Q; Zhang L
    Mol Cancer; 2015 Dec; 14():213. PubMed ID: 26690371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZBP1-MLKL necroptotic signaling potentiates radiation-induced antitumor immunity via intratumoral STING pathway activation.
    Yang Y; Wu M; Cao D; Yang C; Jin J; Wu L; Hong X; Li W; Lu L; Li J; Wang X; Meng X; Zhang Z; Cheng J; Ye Y; Xiao H; Yu J; Deng L
    Sci Adv; 2021 Oct; 7(41):eabf6290. PubMed ID: 34613770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paeoniflorigenone regulates apoptosis, autophagy, and necroptosis to induce anti-cancer bioactivities in human head and neck squamous cell carcinomas.
    Park KR; Lee H; Kim SH; Yun HM
    J Ethnopharmacol; 2022 Apr; 288():115000. PubMed ID: 35051602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Necroptotic TNFα-Syndecan 4-TNFα Vicious Cycle as a Therapeutic Target for Preventing Temporomandibular Joint Osteoarthritis.
    He F; Ma Y; Li S; Ren H; Liu Q; Chen X; Miao H; Ye T; Lu Q; Yang Z; Li T; Tong X; Yang H; Zhang M; Wang H; Wang Y; Yu S
    J Bone Miner Res; 2022 May; 37(5):1044-1055. PubMed ID: 35278225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibiting HMGB1-RAGE axis prevents pro-inflammatory macrophages/microglia polarization and affords neuroprotection after spinal cord injury.
    Fan H; Tang HB; Chen Z; Wang HQ; Zhang L; Jiang Y; Li T; Yang CF; Wang XY; Li X; Wu SX; Zhang GL
    J Neuroinflammation; 2020 Oct; 17(1):295. PubMed ID: 33036632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Necroptosis in human cancers with special emphasis on oral squamous cell carcinoma.
    Krishnan RP; Pandiar D; Ramani P; Jayaraman S
    J Stomatol Oral Maxillofac Surg; 2023 Dec; 124(6S):101565. PubMed ID: 37459966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RAGE interacts with the necroptotic protein RIPK3 and mediates transfusion-induced danger signal release.
    Faust H; Lam LM; Hotz MJ; Qing D; Mangalmurti NS
    Vox Sang; 2020 Nov; 115(8):729-734. PubMed ID: 32633835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Necroptotic cell death in anti-cancer therapy.
    Krysko O; Aaes TL; Kagan VE; D'Herde K; Bachert C; Leybaert L; Vandenabeele P; Krysko DV
    Immunol Rev; 2017 Nov; 280(1):207-219. PubMed ID: 29027225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing heterogeneous single-cell landscape and identifying microenvironment molecular characteristics of primary and lymphatic metastatic head and neck squamous cell carcinoma.
    Zhang J; Liu Y; Xia L; Zhen J; Gao J; Atsushi T
    Comput Biol Med; 2023 Oct; 165():107459. PubMed ID: 37713790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The paracrine effect of cancer-associated fibroblast-induced interleukin-33 regulates the invasiveness of head and neck squamous cell carcinoma.
    Chen SF; Nieh S; Jao SW; Wu MZ; Liu CL; Chang YC; Lin YS
    J Pathol; 2013 Oct; 231(2):180-9. PubMed ID: 23775566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inflammatory mediators drive metastasis and drug resistance in head and neck squamous cell carcinoma.
    St John MA
    Laryngoscope; 2015 Mar; 125 Suppl 3():S1-11. PubMed ID: 25646683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting of EZH2 inhibits epithelial‑mesenchymal transition in head and neck squamous cell carcinoma via regulating the STAT3/VEGFR2 axis.
    Zhao M; Hu X; Xu Y; Wu C; Chen J; Ren Y; Kong L; Sun S; Zhang L; Jin R; Zhou X
    Int J Oncol; 2019 Nov; 55(5):1165-1175. PubMed ID: 31545422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KLF7 regulates super-enhancer-driven IGF2BP2 overexpression to promote the progression of head and neck squamous cell carcinoma.
    Cai H; Liang J; Jiang Y; Wang Z; Li H; Wang W; Wang C; Hou J
    J Exp Clin Cancer Res; 2024 Mar; 43(1):69. PubMed ID: 38443991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of Slug by NF-κB is Essential for TNF-α -Induced Migration and Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma Cells.
    Liu S; Shi L; Wang Y; Ye D; Ju H; Ma H; Yang W; Wang Y; Hu J; Deng J; Zhang Z
    Cell Physiol Biochem; 2018; 47(2):567-578. PubMed ID: 29794474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic discovery of a theranostic signature (SERPINE1/MMP3/COL1A1/SPP1) for head and neck squamous cell carcinomas and identification of antrocinol as a candidate drug.
    Shih ML; Lee JC; Cheng SY; Lawal B; Ho CL; Wu CC; Tzeng DTW; Chen JH; Wu ATH
    Comput Biol Med; 2022 Nov; 150():106185. PubMed ID: 37859283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A transcriptomic map of EGFR-induced epithelial-to-mesenchymal transition identifies prognostic and therapeutic targets for head and neck cancer.
    Schinke H; Shi E; Lin Z; Quadt T; Kranz G; Zhou J; Wang H; Hess J; Heuer S; Belka C; Zitzelsberger H; Schumacher U; Genduso S; Riecken K; Gao Y; Wu Z; Reichel CA; Walz C; Canis M; Unger K; Baumeister P; Pan M; Gires O
    Mol Cancer; 2022 Sep; 21(1):178. PubMed ID: 36076232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.