These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38926863)

  • 1. Leaching of liquation-feeding furnace dross as a first step for germanium recovery.
    Drzazga M; Ciszewski M; Kozłowicz S; Maj I; Ochmański M; Radoń A
    BMC Res Notes; 2024 Jun; 17(1):180. PubMed ID: 38926863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of acid leaching of ilmenite decomposed by KOH Part 2. Leaching by H2SO4 and C2H2O4.
    Nayl AA; Awwad NS; Aly HF
    J Hazard Mater; 2009 Sep; 168(2-3):793-9. PubMed ID: 19321259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: Laboratory and semi-pilot tests.
    Erust C; Akcil A; Bedelova Z; Anarbekov K; Baikonurova A; Tuncuk A
    Waste Manag; 2016 Mar; 49():455-461. PubMed ID: 26711187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison between sulfuric acid and oxalic acid leaching with subsequent purification and precipitation for phosphorus recovery from sewage sludge incineration ash.
    Liang S; Chen H; Zeng X; Li Z; Yu W; Xiao K; Hu J; Hou H; Liu B; Tao S; Yang J
    Water Res; 2019 Aug; 159():242-251. PubMed ID: 31100578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism for leaching of fluoride ions from carbon dross generated in high-temperature and low-lithium aluminum electrolytic systems.
    Huo Q; Li R; Chen M; Zhou R; Li B; Chen C; Liu X; Xiao Z; Qin G; Huang J; Long T
    J Hazard Mater; 2024 May; 469():133838. PubMed ID: 38430589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Cleaner Process for Selective Recovery of Valuable Metals from Electronic Waste of Complex Mixtures of End-of-Life Electronic Products.
    Sun Z; Xiao Y; Sietsma J; Agterhuis H; Yang Y
    Environ Sci Technol; 2015 Jul; 49(13):7981-8. PubMed ID: 26061274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery technologies for indium, gallium, and germanium from end-of-life products (electronic waste) - A review.
    Zheng K; Benedetti MF; van Hullebusch ED
    J Environ Manage; 2023 Dec; 347():119043. PubMed ID: 37776794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aluminum recovery as a product with high added value using aluminum hazardous waste.
    David E; Kopac J
    J Hazard Mater; 2013 Oct; 261():316-24. PubMed ID: 23959251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid.
    Zeng X; Li J; Shen B
    J Hazard Mater; 2015 Sep; 295():112-8. PubMed ID: 25897692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching Vanadium from the Spent Denitration Catalyst in the Sulfuric Acid/Oxalic Acid Combined Solvent.
    Cheng W; Li J; Deng J; Li Y; Cheng F
    ACS Omega; 2024 Feb; 9(8):9286-9294. PubMed ID: 38434804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study on copper leaching from waste printed circuit boards by typical ionic liquid acids.
    Chen M; Huang J; Ogunseitan OA; Zhu N; Wang YM
    Waste Manag; 2015 Jul; 41():142-7. PubMed ID: 25869844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals.
    Birloaga I; Coman V; Kopacek B; Vegliò F
    Waste Manag; 2014 Dec; 34(12):2581-6. PubMed ID: 25242605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system.
    Peng C; Hamuyuni J; Wilson BP; Lundström M
    Waste Manag; 2018 Jun; 76():582-590. PubMed ID: 29510945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of manganese and zinc from spent Zn-C cell powder: Experimental design of leaching by sulfuric acid solution containing glucose.
    Biswas RK; Karmakar AK; Kumar SL
    Waste Manag; 2016 May; 51():174-181. PubMed ID: 26564257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid.
    Oustadakis P; Tsakiridis PE; Katsiapi A; Agatzini-Leonardou S
    J Hazard Mater; 2010 Jul; 179(1-3):1-7. PubMed ID: 20129730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous recovery of vanadium and nickel from power plant fly-ash: optimization of parameters using response surface methodology.
    Nazari E; Rashchi F; Saba M; Mirazimi SM
    Waste Manag; 2014 Dec; 34(12):2687-96. PubMed ID: 25269818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acidic leaching and precipitation of zinc and manganese from spent battery powders using various reductants.
    Sayilgan E; Kukrer T; Yigit NO; Civelekoglu G; Kitis M
    J Hazard Mater; 2010 Jan; 173(1-3):137-43. PubMed ID: 19744786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acidic leaching both of zinc and iron from basic oxygen furnace sludge.
    Trung ZH; Kukurugya F; Takacova Z; Orac D; Laubertova M; Miskufova A; Havlik T
    J Hazard Mater; 2011 Sep; 192(3):1100-7. PubMed ID: 21724325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of exhaust fluorescent lamps to recover yttrium: experimental and process analyses.
    De Michelis I; Ferella F; Varelli EF; Vegliò F
    Waste Manag; 2011 Dec; 31(12):2559-68. PubMed ID: 21840197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lanthanide-alkali double sulfate precipitation from strong sulfuric acid NiMH battery waste leachate.
    Porvali A; Wilson BP; Lundström M
    Waste Manag; 2018 Jan; 71():381-389. PubMed ID: 29110941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.